K17U 1391

Answer any one essay question out of 2:

 $(1 \times 10 = 10)$

- 34. State and prove the inverse function theorem.
- 35. If D is open in ${\rm I\!R}^2$, the function $F:D\to {\rm I\!R}$ has continuous partial derivatives F_1 and F_2 on D and $(x_0,y_0)\in D$ be such that $F(x_0,y_0)=0$ and $F_2(x_0,y_0)\neq 0$, show that there is an open interval $I_0\in {\rm I\!R}$ and a continuously differentiable function $\phi:I_0\to {\rm I\!R}$ such that $x_0\in I_0$, $(x,\phi(x))\in D$ for all $x\in I_0$, $\phi(x_0)=y_0$ and such that $F(x,\phi(x))=0$ for all $x\in I_0$. Also, prove that the formula $\phi'(x)=\frac{-F_1(x,\phi(x))}{F_2(x,\phi(x))}$ is valid for all $x\in I_0$.

1/8	COLL	EGE!
BAEN	153	2 P. S.
100	65.7	153
1	* THI	

K17U 1391

Reg. No.:....

Name :

IV Semester B.Sc. Hon's (Mathematics) Degree (Regular/Supple./Improv.)

Examination, May 2017

(2013 Admission)

BHM 401 : REAL ANALYSIS - II

Time: 3 Hours

Max. Marks: 80

Answer all the 10 questions:

 $(10 \times 1 = 10)$

- 1. Define a tagged partition of a closed interval I.
- 2. If $f \in R[a, b]$, define the indefinite integral of f with base point 'a'.
- 3. State the additivity theorem in Riemann integration.
- 4. Give the Cauchy criterion for the Riemann integrability of a function $f:[a,b]\to {\rm I\!R}$.
- 5. Find the indefinite integral of the Thomae's function.
- 6. Define the nth trapezoidal approximation of a real valued function f.
- 7. State Dini's theorem.
- 8. If $f: D \to IR$, where $D \subseteq IR^n$, define the partial derivative of f with respect to x_i at x_i , where $x = (x_1, x_2, ..., x_n) \in D$.
- 9. If $\phi: A \to \mathbb{R}$, $A \subseteq \mathbb{R}$ is a function, define the uniform norm of ϕ on A.
- 10. Given $z = x^2 + y^3$, where x = st, $y = e^{st}$, find $\frac{\partial Z}{\partial S}$.

P.T.O.

K17U 1391

Answer any 10 short answer questions out of 14:

 $(10 \times 3 = 30)$

- 11. Show that the Dirichlet function defined by f(x) = 1, if $x \in [0, 1]$ is rational and f(x) = 0 if $x \in [0, 1]$ is irrational, is not Riemann integrable.
- 12. If ϕ : [a, b] \rightarrow IR is a step function, show that $\phi \in R[a, b]$.
- 13. Using the substitution theorem, find the value of $\int\limits_1^4 \frac{\text{sin}\sqrt{t}}{\sqrt{t}} \, dt$.
- 14. If F, G are differentiable and if f = F' and g = G' belong to R[a, b], show that $\int\limits_a^b fG = FG \Big|_a^b \int\limits_a^b Fg \,.$
- 15. If $f \in R[a, b]$, prove that $|f| \in R[a, b]$ and $\left| \int_a^b f \right| \le \int_a^b |f|$.
- 16. Show that the sequence (xⁿ) converges to zero on (-1, 1) but it is not uniformly convergent on (-1, 1).
- 17. Prove that the limit of a power series is continuous on the interval of convergence.
- 18. Obtain the Taylor series expansion of $g(x) = e^x$, $x \in IR$, at c = 0.
- 19. Show that $u = x^2 y^2$ and v = 2xy is analytic in a neighbourhood of origin.
- 20. State Leibnitz rule for the differentiation under the integral sign and using this, find the derivative of $F(y) = \int_a^b \sin(xy) dx$.
- 21. Show that $f(x, y) = \sqrt{|xy|}$ is not differentiable at (0, 0).

2

K17U 1391

- 22. If f is differentiable at $(x_0, y_0) \in IR^2$ and $\overline{u} = (u_1, u_2)$ is any unit vector, show that $D_{\overline{u}}f(x_0, y_0) = f_1(x_0, y_0)u_1 + f_2(x_0, y_0)u_2 \,.$
- 23. If $f(x, y) = x^2y^3$, x = 3, y = 1, $\Delta x = \Delta y = 0.01$, find Δf and df.
- 24. If $f(x, y) = x^2 y^2 + 2y$, verify whether $f_{12} = f_{21}$.

Answer any 6 short essay questions out of 9:

(6×5=30)

- 25. Using the definition of Riemann integral of a function prove that $\int\limits_0^3 g = 8 \,, \text{ where}$ $g(x) = 2 \text{ for } 0 \le x \le 1 \text{ and } g(x) = 3 \text{ for } 1 < x \le 3 \,.$
- 26. If $f, g \in R[a, b]$, show that $f + g \in R[a, b]$.
- 27. If $f \in R[a, b]$, show that f is bounded on [a, b].
- 28. If $f:[a,b] \to \mathbb{R}$ is monotone on [a,b], show that $f \in \mathbb{R}[a,b]$.
- 29. Given $f \in R[a, b]$, prove that the indefinite integral of f is continuous on [a, b].
- 30. Show that a sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A if and only if $||f f||_A \to 0$.
- 31. If $h_n(x) = 2nxe^{-nx^2}$, $x \in [0, 1]$, show that $\int_0^1 \lim h_n(x) \, dx \neq \lim \int_0^1 h_n(x) \, dx$.
- 32. If $f(x, y) = x^2 + xy + 2$ and $\overline{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, find $D_{\overline{u}}f(1, 1)$.
- 33. If the sequence (f_n) is a sequence of bounded function on $A \subseteq R$ that converges uniformly to f, show that (f_n) is a Cauchy sequence.