

K19U 0780

Reg. No.:....

Name :

IV Semester B.Sc. Hon's (Mathematics) Degree (Supplementary)

Examination, April 2019

(2013-2015 Admissions)

BHM 401 : REAL ANALYSIS - II

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions:

 $(10 \times 1 = 10)$

- 1. Define Riemann integrable function.
- 2. State boundedness theorem.
- 3. Give an example of a function which is not Riemann integrable.
- 4. State additivity theorem in Riemann integration.
- 5. Define pointwise convergence of sequence of functions.
- 6. Give an example of uniformly convergent sequence of function.
- 7. State Mean Value Theorem.
- 8. For the harmonic function $f(x, y) = e^x \cos y$, verify that $f_{12} = f_{21}$.
- 9. Give an example of an elliptic integral of the second kind.
- 10. Write the sufficient conditions for differentiability of a function f at a point x_0 .

Answer any 10 short answer questions out of 14:

 $(10 \times 3 = 30)$

- 11. Prove that $f \in \mathcal{R}[a, b]$ and $g \in \mathcal{R}[a, b]$ then $f + g \in \mathcal{R}[a, b]$.
- 12. Find the norms of the partitions:
 - a) $P_1 = (0, 1, 3, 4)$; b) $P_2 = (0, 2, 3, 4)$ of the interval [0, 4].

- 13. State Squeeze theorem.
- 14. If $f \in \mathcal{R}[a, b]$ and if $[c, d] \subseteq [a, b]$, the restriction of f to [c, d] is in $\mathcal{R}[a, b]$.
- 15. If $f(x) = \frac{1}{2}x^2$, $\forall x \in [a, b]$. Find the integral $\int_a^b x dx$ by using Fundamental theorem of calculus.
- 16. State and prove composition theorem.
- 17. Define uniform norm of a function.
- 18. Show that $\lim \left(\frac{x}{x+n}\right) = 0$, for all $x \in \mathbb{R}$, $x \ge 0$.
- 19. State Cauchy criterion for the series of function.
- 20. Define Taylor series expansion of $f(x) = e^x x \in \mathbb{R}$ at c = 0.
- 21. Write the partial derivative of the function $f(x, y) = \frac{\sqrt{36 4x^2 y^2}}{3}$.
- 22. Verify that $f_{12} = f_{21}$ for the function $f(x, y) = e^x \cos y$.
- 23. If $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (x_0, y_0) , show that it is continuous at (x_0, y_0) .
- 24. If $f(x, y) = x^2y^3$, x = 3, y = 1, $\Delta x = \Delta y = 0.01$, find Δf and df.

Answer any 6 short answer questions out of 9:

 $(6 \times 5 = 30)$

- 25. If $f:[a,b] \to \mathbb{R}$ is continuous, then show that $f \in \mathcal{R}[a,b]$.
- 26. Prove that if $f(x) = \operatorname{sgn} x$ on [-1, 1], then $f \in \Re[a, b]$.
- 27. Let F, G be differentiable on [a, b] and let f = F' and g = G', belong to $\Re[a, b]$. Then, prove that $\int_{a}^{b} fG = FG \int_{a}^{b} - \int_{a}^{b} Fg$.
- 28. Prove that a sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A to f if and only if $\|f_n f\|_A \to 0$.
- 29. Let (f_n) be a sequence of continuous on a set $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly on A to a function $f: A \to \mathbb{R}$. Then prove that f is continuous on A.

K19U 0780

- 30. State and prove Cauchy-Hadamard theorem.
- 31. Prove that if f is continuous on [a, b] \times [c, d] and F(y) = $\int_a^b f(x, y) dx$, then F is continuous on [c, d].
- 32. Show that $f(x, y) = \begin{cases} \frac{x^3 xy^2}{x^2 + y^2}, & \text{if } (x, y) \neq (0, 0) \\ 0, & \text{if } (x, y) = (0, 0) \end{cases}$ is continuous and has first order

partial derivatives on \mathbb{R}^2 , but not differentiable at (0, 0).

33. State and prove Mean Value theorem.

Answer any one essay question out of 2:

 $(1 \times 10 = 10)$

- 34. State and prove first form of fundamental theorem of Calculus.
- 35. Let f be defined in a neighbourhood of $(x_0, y_0) \in \mathbb{R}^2$. Suppose f has partial derivatives, f_1 , f_2 , f_{12} and f_{21} in this neighbourhood and that the mixed partials f_{12} and f_{21} are continuous at (x_0, y_0) . Prove that f_{12} $(x_0, y_0) = f_{21}$ (x_0, y_0) .