ı	18818111	111111	HILL	ш	m	188	811	П
I				Ш	Ш	ш	III	Ш

(TO	DLLEGE
BREN	W. Charles
1500	· THE

K16U 1335

Reg. No.:

Name :

IV Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improve.)

Examination, May 2016

BHM 401 : REAL ANALYSIS – II

Time: 3 Hours

Max. Marks: 80

Answer all the 10 questions.

 $(10 \times 1 = 10)$

- 1. Define the mesh of a partition P of an interval [a, b].
- 2. Define the Riemann integral of a function $f : [a, b] \rightarrow \mathbb{R}$
- State the squeeze theorem for a function f : [a, b] →R, regarding Riemann integration of f.
- Give the Cauchy criterion for the Riemann integrability of a function f: [a, b] → ℝ.
- 5. State the fundamental theorem of integral calculus (second form).
- 6. Define the mid point approximation of a real valued function f.
- 7. If $A \subseteq \mathbb{R}$, $\phi : A \to \mathbb{R}$ is a function, define the uniform norm of ϕ on A.
- 8. Define the Taylor expansion of a real valued function f at $c \in \mathbb{R}$.
- 9. If f: $\mathbb{R}^2 \to \mathbb{R}$, define the differentiability of f at $(x_0 y_0)$.
- 10. Find $\frac{dz}{dt}$ if z = xy, where $x = t^2$, $y = t^3$.

Answer any 10 short answer questions out of 14.

(10×3=30)

- 11. If f and g are in R [a, b] and if $f(x) \leq g(x)$ for all $x \in [a, b]$, show that $\int\limits_a^b f \leq \int\limits_a^b g$.
- 12. If J is a subinterval of [a, b] having end points c < d and if $\phi_j(x) = 1$ for $x \in J$ and $\phi_j(x) = 0$ elsewhere in [a, b], show that $\phi_j \in R$ [a,b].

P.T.O.

13. If $f \in R$ [a, b], α , β , γ are any numbers and if any two of the following integrals exist, show that the third also exists and $\int_{0}^{\beta} f = \int_{0}^{\gamma} f + \int_{0}^{\beta} f$.

- 14. If f, $g \in R[a, b]$, show that f, $g \in R[a, b]$.
- 15. If $f \in R[a, b]$, prove that $|f| \in R[a, b]$ and $\left| \int_a^b |f| \le \int_a^b |f|$.
- 16. Show that the sequence $\left(\frac{x}{n}\right)$ converge to zero, but it is not uniformly convergent on \mathbb{R} .
- If R is the radius of convergence of ∑a_nxⁿ and if K is a closed, bounded interval
 contained in the interval of convergence (− R, R), show that the power series
 converges uniformly on K.
- 18. Obtain the Taylor expansion of $g(x) = e^x$, $x \in \mathbb{R}$ at c = 0.
- 19. If $u(x, y) = y^3 3x^2y$ and $v(x, y) = x^3 3xy^2$, show that u and v satisfy Cauchy-Riemann equations.
- 20. If $f(x, y) = x^2 y^2 + 2y$, verify whether $f_{12} = f_{21}$.
- 21. State Leibnitz rule for differentiation under the integral sign and using this find the derivative of $F(y) = \int_{0}^{\pi/2} \frac{dx}{\sqrt{1-y^2 sinx}}$.
- 22. If $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (x_0, y_0) , show that it is continuous at (x_0, y_0) .
- 23. If f (x, y) = x^2y^3 , x = 3, y = 1, $\Delta x = \Delta y = 0.01$, find Δf and df.
- 24. Prove that any function of the form f(x, t) = g(x+ct), satisfies $c^2 \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial t^2}$, where c is a constant and f(x, t) describes the vertical displacement of a particle in a wave corresponding to horizontal coordinate x at time t.

Answer any 6 short essay questions out of 9.

 $(6 \times 5 = 30)$

- 25. If f ∈ R [a, b], show that the Riemann integral of f is uniquely determined.
- 26. If F(x) = 1 for $x = \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$ and F(x) = 0 elsewhere on [0, 1], show that $F \in \mathbb{R}[0, 1]$ and $\int_{0}^{1} F = 0$.
- 27. If f∈ R [a, b], show that f is bounded on [a, b].
- 28. If $f: [a, b] \to \mathbb{R}$ is continuous on [a, b], show that $f \in \mathbb{R}$ [a, b].
- 29. Given f, F: [a, b] $\rightarrow \mathbb{R}$, E is a finite set in [a, b], F is continuous on [a, b], $F^{1}(x) = f(x) \text{ for all } x \in [a, b] \setminus E \text{ and } f \in \mathbb{R} \text{ [a, b], show that } \int_{a}^{b} f = F(b) F(a).$
- 30. If the sequence (f_n) is a sequence of bounded functions on $A \subseteq \mathbb{R}$ that converges uniformly to f, show that (f_n) is a Cauchy sequence.
- 31. If (f_n) is a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and (f_n) converges uniformly on A to a function $f: A \to \mathbb{R}$ show that f is continuous.
- 32. Given $f(x,y) = \frac{xy(x^2 y^2)}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$ and f(x, y) = 0 if (x, y) = (0, 0), show that $f_{12}(0, 0) \neq f_{21}(0, 0)$.
- 33. If f is continuous on R = [a, b] \times [c, d] and F(y) = $\int_{a}^{b} f(x,y)dx$, show that F is continuous on [c, d].

Answer any one essay question out of 2.

 $(1 \times 10 = 10)$

- 34. If $f \in R[a, b]$, f is continuous at a point $c \in [a, b]$ and if F is the indefinite integral of f, show that F is differentiable at c and F'(c) = f(c).
- 35. State and prove the inverse function theorem.