## K17U 1393

Answer any one essay questions out of 2.

 $(1 \times 10 = 10)$ 

- 34. Using dual simplex method, solve the LPP: Minimize  $z = 5x_1 + 3x_2 + 5x_3$  subject to  $2x_1 + x_2 + x_3 \ge 2$ ,  $x_1 + x_2 + 2x_3 \ge 3$ ,  $x_1, x_2, x_3 \ge 0$ .
- 35. Using Floyd's algorithm, find the shortest route between every two nodes of the following graph. Arc (3, 5) is directional, so that no traffic is allowed from node 5 to node 3.





K17U 1393

Reg. No.: .....

IV Semester B.Sc. Hon's (Mathematics) Degree (Regular/Supple./Improv.) Examination, May 2017

BHM 403: OPERATIONS RESEARCH (2013 Admission)

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions.

 $(10 \times 1 = 10)$ 

- 1. What do you mean by surplus variables?
- 2. What is the penalty rule for artificial variables?
- 3. Explain the terms degeneracy and cycling in LPP.
- 4. What is the effect of dual constraints if the primal variables are unrestricted in sign?
- 5. List any three cases that can arise in post-optimal analysis of an LPP and the action needed to obtain the new solution.
- 6. What do you mean by a balanced transportation problem?
- 7. Define an Assignment problem.
- 8. What do you mean by transshipment node?
- 9. Define a spanning tree.
- 10. What do you mean by Critical Path Method?

Answer any 10 short answer questions out of 14.

 $(10 \times 3 = 30)$ 

- 11. Express the following linear programming problem into standard form : Maximize  $Z = 3x_1 + 2x_2 + 5x_3$  subject to  $2x_1 - 3x_2 \, \leq \, 3, \, x_1 + 3x_2 + 3x_3 \, \leq 5, \, 3x_1 + 2x_3 \, \leq \, 2, \, x_1 \geq 0, \, x_2 \geq 0, \, x_3 \geq \, 0.$
- 12. Explain algebraic method to solve a LPP.

P.T.O.





- 13. Show algebraically that all the basic solutions of the following LPP are infeasible: Maximize  $z = x_1 + 2x_2 \le 6$ ,  $2x_1 + x_2 \le 16$ ,  $x_1, x_2 \ge 0$ .
- 14. Compare M-method and two phase method for solving LPPs containing equations and ≥ constraints.
- 15. Write the dual of the LPP: Minimize  $z = 15x_1 + 12x_2$  subject to  $x_1 + 2x_2 \ge 3$ ,  $2x_1 - 4x_2 \le 5$ ,  $x_1$ ,  $x_2 \ge 0$ .
- 16. Write a note on advantages of using dual LPP instead of primal LPP.
- 17. Explain least-cost method to find the starting solution of a transportation problem.
- Write the transportation algorithm.
- 19. Explain the difference between transportation problem and assignment problem.
- 20. Draw a network of five nodes, determine a path and a cycle in it.
- 21. Write Dijikstra's algorithm for shortest route problem.
- 22. Explain the linear programming formulation of maximal flow mode.
- Explain forward pass critical path calculations.
- 24. Compare optimistic time estimate and pessimistic time estimate in PERT calculations.

Answer any 6 short answer questions out of 9.

 $(6 \times 5 = 30)$ 

- 25. Using graphical method, solve the LPP: Maximize  $z = 2x_1 + 3x_2$  subject to  $x_1 + 3x_2 \le 6$ ,  $3x_1 + 2x_2 \le 6$ ,  $x_1, x_2 \ge 0$ .
- 26. Briefly explain simplex method algorithm to solve an LPP.
- 27. By an example, show that dual of the dual is primal.
- 28. Briefly explain economic interpretation of duality.





29. Using Vogel approximation method find a starting solution to the transportation problem:

|                  | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | D <sub>4</sub> | Demand   |  |  |
|------------------|----------------|----------------|----------------|----------------|----------|--|--|
| O <sub>1</sub> 8 |                | 4              | 6              | 6              | 34       |  |  |
| 02               | 6              | 6              | 8              | 7              | 15<br>12 |  |  |
| 03               | 9              | 7              | 7              | 6              |          |  |  |
| 04               | 7              | 2              | 7              | 5              | 19       |  |  |
| Supply           | 21             | 25             | 17             | 17             | 80       |  |  |

- 30. Explain the simplex explanation of the Hungarin method to solve an assignment problem.
- 31. Solve the assignment problem:

|                  | M <sub>1</sub> | M <sub>2</sub> | M <sub>3</sub> | M <sub>4</sub> |  |
|------------------|----------------|----------------|----------------|----------------|--|
| J <sub>1</sub> 6 |                | 12             | 7              | 15             |  |
| $J_2$            | 11             | 8              | 11             | 7              |  |
| J <sub>3</sub>   | 16             | 14             | 15             | 12             |  |
| J <sub>4</sub>   | 9              | 9              | 11             | 6              |  |

32. Solve the minimum-span problem for the network given below :



33. A project consists of nine jobs (A, B, C, . . . I) with the following precedence relation and time estimates. Draw the project network.

| Job         | Α  | В  | С    | D    | Е | F    | G    | Н    | -1   |
|-------------|----|----|------|------|---|------|------|------|------|
| Predecessor | -  | _  | A, B | A, B | В | D, F | C, F | D, E | G, H |
| Time (days) | 15 | 10 | 10   | 10   | 5 | 5    | 20   | 10   | 15   |