
K16U 1337

Answer any one essay questions out of 2:

 $(1 \times 10 = 10)$

- 34. Using two phase method, solve the LPP : Minimize $z=4x_1+x_2$ subject to $3x_1+x_2=3,\ 4x_1+3x_2\leq 6,\ x_1+2x_2\geq 4,\ x_1,\ x_2\geq 0.$
- 35. Determine the critical path for the project network given below. All the durations are in days:

K16U 1337

Reg. No.:

Name :

IV Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improve.)

Examination, May 2016

BHM 403: OPERATIONS RESEARCH

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions :

 $(10 \times 1 = 10)$

- 1. What do you mean by artificial variables?
- 2. Compare basis and non-basic variables.
- 3. What is the optimality condition for simplex method?
- 4. What are the rules for constructing the dual LPP from its primal?
- List any three cases that can arise in post-optimal analysis of an LPP and the action needed to obtain the new solution.
- 6 What do you mean by a balanced transportation problem?
- 7. How to convert an unbalanced assignment problem to a balanced one?
- 8. What do you mean by transshipment model?
- 9. Define a connected network.
- 10. Explain the terms critical activity, noncritical activity and an event of a network.

Answer any 10 short answer questions out of 14:

(10×3=30)

11. Express the following linear programming problem into standard form :

Minimize
$$Z = x_1 - 2x_2 + x_3$$
 subject to

$$2x_1 + 3x_2 + 4x_3 \ge -4$$
, $3x_1 + 5x_2 + 2x_3 \ge 7$, $x_1 \ge 0$, $x_2 \ge 0$ and x_3 is unrestricted.

12. Explain graphical method to solve an LPP.

P.T.O.

- 13. Determine all the basic solutions of the LPP : Maximize $z=2x_1+3x_2$ subject to $2x_1+x_2\leq 4,\ x_1+2x_2\leq 5,\ x_1,\ x_2\geq 0$: and classify them as feasible and infeasible.
- 14. What are the optimality conditions in M-method to solve an LPP?
- 15. Write the dual of the LPP : Maximize $z = 5x_1 + 6x_2$ subject to $x_1 + 2x_2 = 5$, $-x_1 + 5x_2 \ge 3$, $4x_1 + 7x_2 \le 8$, $x_2 \ge 0$ and x_1 unrestricted.
- 16. Write a note on advantages of using dual LPP instead of primal LPP.
- Explain Vogel approximation method to find the starting solution of a transportation problem.
- 18. What is the number of basic variables in a transportation problem with a transportation matrix of order m x n?
- 19. Explain assignment problem as a special case of transportation problem.
- 20. Draw the network defined by $N = \{1, 2, 3, 4, 5, 6\}$ and $A = \{(1, 2), (1, 5), (2, 3), (2, 4), (3, 4), (3, 5), (4, 3), (4, 6), (5, 2), (5, 6)\}$
- 21. Write Floyd's algorithm for shortest route problem.
- 22. Explain the linear programming formulation of CPM.
- 23. Explain backward pass critical path calculations.
- 24. Write the important steps of PERT procedure.

Answer any 6 short answer questions out of 9:

(6×5=30

- 25. Using graphical method, solve the LPP : Maximize $z = 4x_1 + 3x_2$ subject to $2x_1 + x_2 \le 72$, $x_1 + 2x_2 \le 48$, x_1 , $x_2 \ge 0$.
- 26. Write a note on degeneracy, cycling and unbounded solutions in LPP.
- 27. Briefly explain economic interpretation of dual variables.
- 28. Explain dual simplex algorithm.

29. Using North-west corner method find a starting solution to the transportation problem:

111	D,	D ₂	D ₃	D ₄	Demand	
O ₁ 6		4	1	5	14	
O ₂	8	9	2	7	16	
O ₃	4	3	6	2	5	
Supply	6	10	15	4	35	

- Explain the simplex explanation of the method of multipliers to solve transportation problem.
- 31. Solve the assignment problem:

	W,	W ₂	W ₃	W ₄	
J	5	7	11	6	
J ₂	8	5	9	6	
J ₃	4	7	10	7	
J ₄	10	-4	8	3	

- 32. Write the maximal flow algorithm.
- 33. A project consists of ten activities (A, B, C,J) with the following precedence relation and time estimates. Draw the project network.

Activity	Α	В	С	D	E	F	G	Н	1	J
Predecessor(s)	-	1	-	12	A,B	Е	F	D	G, H	C, I
Duration (weeks)	3	2	4	3	2	4	2	1	2	4