

Answer any one essay questions out of 2:

(1×10=10)

34. Using M-method, solve the LPP:

Minimize
$$z = 4x_1 + x_2$$
 subject to

$$3x_1 + x_2 = 3$$
, $4x_1 + 3x_2 \le 6$, $x_1 + 2x_2 \ge 4$, x_1 , $x_2 \ge 0$.

35. Apply Dijkastra's algorithm to find the shortest route from s to t in the following graph:

M 9230

Reg. No.:....

Name:....

IV Semester B.Sc. (Hon's) Degree (Mathematics) (Regular)

Examination, May 2015

BHM - 403 : OPERATIONS RESEARCH

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions:

 $(10 \times 1 = 10)$

- 1. What do you mean by slack variables?
- 2. What do you mean by basic solution of an LPP?
- 3. What do you mean by degeneracy in LPP?
- 4. What is the effect of dual variables if the primal constraints are equations?
- 5. What is the relation between primal objective value and dual objective value of an LPP?
- 6. Define a transportation model.
- 7. What do you mean by a balanced assignment problem?
- 8. What do you mean by transshipment model?
- 9. Define a network.
- 10. What do you mean by PERT?

Answer any 10 short answer questions out of 14:

(10×3=30)

- 11. What are the conditions required for the standard form of an LPP?
- 12. Explain graphical method to solve a LPP.

P.T.O.

- 13. Find all the basic solutions of the equations $2x_1 + x_2 + 4x_3 = 11$, $3x_1 + x_2 + 5x_3 = 14$.
- 14. What are the optimality conditions in simplex method?
- 15. Write the dual of the LPP: maximize $z = 5x_1 + 12x_2 + 4x_3$ subject to $x_1 + 2x_2 + x_3 \le 10$, $2x_1 - x_2 + 3x_3 = 8$, $x_1, x_2, x_3 \ge 0$.
- 16. Write a note on post-optimal analysis in LPP.
- 17. Explain North-west corner method to find the starting solution of a transportation problem.
- 18. How to convert an unbalanced transportation problem to a balanced one?
- 19. Give any two applications of assignment problem.
- 20. Draw the network representing Konigsberg problem.
- 21. Write minimal spanning tree algorithm.
- 22. Write the linear programming formulation of shortest route problem.
- 23. Explain the terms float, total float and free float.
- 24. Distinguish PERT and CPM.

Answer any 6 short answer questions out of 9: (6x5=30)

- 25. Using graphical method, solve the LPP: Maximize $z = 2x_1 + 3x_2$ subject to $2x_1 + x_2 \le 4$, $x_1 + 2x_2 \le 5$, x_1 , $x_2 \ge 0$.
- 26. Construct first two simplex tables for the LPP: Maximize $z = 2x_1 + 4x_2 + 4x_3 - 3x_4$ subject to $x_1 + x_2 + x_3 = 4$, $x_1 + 4x_2 + x_4 = 8$, x_1 , x_2 , x_3 , $x_4 \ge 0$ without using any artificial variables.
- 27. What are the rules for constructing dual LPP from its primal?
- 28. Explain dual simplex algorithm.

29. Using least-cost method find a starting solution to the transportation problem:

	D,	D ₂	D_3	Demand
O,	1	2	3	50
0,	3	2	1	80
O ₃	4	5	6	75
O ₄	3	1	2	95
Supply	120	80	100	300

- 30. Explain Hungarian method to solve an assignment problem.
- 31. Solve the assignment problem:

	W,	W ₂	W ₃	W ₄	
J,	10	12	19		
J ₂	5	10	7	8	
J ₃	12	14	13	11	
J ₄	8	15	11	9	

- 32. Write the maximal flow algorithm.
- 33. A project consists of nine jobs (A, B, C, ...I) with the following precedence relation and time estimates. Draw the project network.

Job	Α	В	С	D	Е	F	G	Н	1
Predecessor	-	855	A, B	A, B	В	D, F	C, F	D, E	G, H
Time (days)	15	10	10	10	5	5	20	10	15