% :=				
	90			
			© 20	
		**		

Reg. No.:

Name:

K18U 0310

IV Semester B.Sc. Hon's (Mathematics) Degree (Regular/Supple.
Improv.) Examination, May 2018
BHM 402 : ADVANCED ABSTRACT ALGEBRA

(2016 Admission Onwards)

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. Write the left cosets of the subgroup $3\mathbb{Z}$ of \mathbb{Z} .
- 2. State true or false: Every factor group of a cyclic group is cyclic.
- 3. Find the value of (12) (16) in the ring \mathbb{Z}_{24} .
- 4. Give example for an integral domain which is not a field.
- 5. State true of false : $x^2 3$ is irreducible over \mathbb{Q} .

 $(4 \times 1 = 4)$

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

- 6. What do you mean by index of a subgroup in a group?
- 7. Define group homomorphism.
- 8. What do you mean by a factor group?
- 9. Define a simple group. Give an example.
- 10. Define a ring. Give an example for a non-commutative ring.

P.T.O.

K18U 0310

-2-

- 11. Solve the equation $x^2 5x + 6 = 0$ in \mathbb{Z}_{12} .
- 12. What is the reminder of 8103 when divided by 13.
- 13. Find all zeros of $x^5 + 3x^3 + x^2 + 2x$ in \mathbb{Z}_5 .
- 14. State factor theorem. Factorize $x^4 + 4$ in $\mathbb{Z}_5[x]$.

 $(6 \times 2 = 12)$

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

- 15. State and prove Lagranges theorem.
- 16. Let ϕ be a homomorphism of a group G into a group G'. Prove that if e is the identity element in G, then ϕ (e) is the identity element in G'.
- 17. Prove that a group homomorphism $\phi: G \to G''$ is a one-to-one amp if and only if $Ker(\phi) = \{e\}$.
- 18. Show that if H and N are subgroups of a group G and N is normal in G, then $H \cap N$ is normal in H. Show by an example that $H \cap N$ need not be normal in G.
- 19. Prove that M is a maximal normal subgroup of G if and only if G/M is simple.
- 20. Show that the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_6) / \langle (2,3) \rangle$ is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_3$ or \mathbb{Z}_{12} .
- 21. Prove that the cancellation laws hold in a ring R if and only if R has no divisors of 0.
- 22. State and prove Euler's theorem.
- 23. Find all solutions of the congruence equation $15x \equiv 27 \pmod{18}$.
- 24. Prove that the set R[x] of all polynomials in an indeterminate x with coefficients in a ring R is a ring under polynomial addition and multiplication.
- 25. Discuss the irreducibility of $f(x) = x^4 2x^2 + 8x + 1$ over \mathbb{Q} .
- 26. State and prove Eisenstein Criterion for irreducibility of a polynomial. (8×4=32)

3-

K18U 0310

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

- 27. a) Let H be a subgroup of a group G. Let the relation \sim_L be defined on G by $a \sim_L b$ if and only if $a^{-1}b \in H$. Prove that \sim_L is an equivalence relation on G.
 - b) Prove that every group of prime order is cyclic.
- 28. State and prove fundamental homomorphism theorem.
- 29. a) Prove that every finite integral domain is a field.
 - b) Show that for every integer n, the number n³³ n is divisible by 15.
- 30. State and prove division algorithm for F[x].

 $(2 \times 6 = 12)$