K18U 0309

- 29. If $f: [a,b] \to \mathbb{R}$, show that $f \in \mathfrak{R}[a,b]$ if and only if for every $\epsilon > 0$ there exist functions α_{ϵ} and ω_{ϵ} in $\mathfrak{R}[a,b]$ with $\alpha_{\epsilon}(x) \le f(x) \le \omega_{\epsilon}(x)$ for all $x \in [a,b]$ and such that $\int_{a}^{b} (\omega_{\epsilon} \alpha_{\epsilon}) < \epsilon$.
- 30. If (X, d) is a metric space, prove the following:
 - i) ϕ and X are open sets in (X, d).
 - ii) the union of any finite, countable or uncountable family of open sets is open.
 - iii) the intersection of any finite family of open sets is open.

Reg. No). :

K18U 0309

lame :

IV Semester B.Sc. Hon's (Mathematics) Degree (Regular/Supple./
Improve.) Examination, May 2018

BHM 401 : ADVANCED REAL ANALYSIS AND METRIC SPACES (2016 Admission Onwards)

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4)

- 1. If I = [0, 4], find the norm of the partition P = (0, 1, 1.5, 2, 3.4, 4)
- 2. Define a Riemann integrable function.
- 3. Find $\lim \left(\frac{x}{n}\right)$ for $x \in \mathbb{R}$.
- 4. Define uniform convergence of a sequence of functions on $A \subseteq \mathbb{R}$.
- 5. Define the discrete metric on a set X.

SECTION-B

Answer any 6 questions out of 9 questions. Each questions carries 2 marks. (6×2=12)

- 6. Prove that every constant function on [a, b] is in $\Re[a, b]$.
- 7. Let $g: [0,3] \to \mathbb{R}$ be defined by g(x) = 2 for $0 \le x \le 1$ and g(x) = 3 for $1 < x \le 3$. Show that $\int_{0}^{3} g = 8$.

K18U 0309

- 8. If J is a subinterval of [a, b] having end points c < d and $\phi(x) = 1$ for $x \in J$ and $\phi_j(x) = 0$ elsewhere in [a, b], show that $\int_a^b \phi_j = d c$.
- 9. Show that any step function is Riemann integrable.
- 10. If $f \in \Re[a, b]$ and if $[c, d] \subseteq [a, b]$, show that the restriction of f to [c, d] is in $\Re[c, d]$.
- 11. If f is continuous on [a, b], $f(x) \ge 0$ for all $x \in [a, b]$ and $\int_a^b f = 0$, show that f(x) = 0 for all $x \in [a, b]$.
- 12. Prove that the function $f(x) = \frac{x}{1+x}$ is monotonically increasing.
- Give an example of a Cauchy sequence in a metric space X such that it does not converge to a point of the space.
- 14. If A is a subset of a metric space (X, d), prove that A° is an open subset of A that contains every open subset of A.

SECTION - C

Answer any 8 questions out of 12 questions. Each questions carries 4 marks. (8×4=32)

- 15. If g is Riemann integrable on [a, b] and if f (x) = g (x) except for a finite number of points in [a, b], show that f is Riemann integrable and $\int_a^b f = \int_a^b g$.
- 16. If f ∈ R [a, b], show that the value of the integral is uniquely determined.
- 17. If f and g are in R [a, b] and f (x) \leq g (x) for all x \in [a, b], show that $\int\limits_a^b f \leq \int\limits_a^b g$.

K18U 0309

- 18. Prove that the Dirichlet function, defined by f (x) = 1 if x ∈ [0, 1] is rational and f (x) = 0 if x ∈ [0, 1] is irrational, is not Riemann integrable.
- 19. If $f : [a, b] \to \mathbb{R}$ is continuous on [a, b], show that $f \in \Re[a, b]$.
- 20. If $f : [a, b] \to \mathbb{R}$ is monotone on [a, b], show that $f \in \mathfrak{R}[a, b]$.
- 21. If $f \in \Re[a, b]$, prove that the indefinite integral of f, defined by F (z) = $\int_a^c f$, is continuous on [a, b].
- 22. Prove that a sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A if and only if $||f_n f|| \to 0$.
- 23. State and prove the Cauchy-Hadamard theorem.
- 24. State and prove the Holder's inequality.
- 25. If a Cauchy sequence of points in a metric space (X, d) contains a convergent subsequence, prove that the sequence converge to the same limit as the subsequence.
- 26. Prove that a subset G in a metric space (X, d) is open if and only if it is the union of all open balls contained in G.

SECTION - D

Answer any 2 questions out of 4 questions. Each carries 6 marks.

 $(2 \times 6 = 12)$

- 27. Let h (x) = x for $x \in [0, 1]$, show that $h \in \Re[0, 1]$.
- 28. State and prove the Cauchy criterion for the Riemann integrability of a function f: [a, b] → ℝ