C CEL VALUERARY

K20U 0217

Reg. No	. :	
---------	-----	--

Name :

IV Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)

Examination, April 2020

(2016 Admission Onwards)

BHM 401: ADVANCED REAL ANALYSIS AND METRIC SPACES

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

 $(4 \times 1 = 4)$

- 1. If $f(x) = x^2$ for $x \in [0, 4]$, calculate the Riemann sum corresponding to the partition P = (0, 2, 3, 4) with tags at the left end points of the subintervals.
- 2. Give an example of a function $f : [a, b] \to \mathbb{R}$ that is in $\Re[c, b]$ for every $c \in (a, b)$ but which is not in $\Re[a, b)$.
- 3. Find $\lim (x^2 + nx)/n$ for $x \in \mathbb{R}$.
- State the Cauchy criterion for uniform convergence of a sequence of functions.
- 5. Obtain the derived set F', where $F = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

6. If $G(x) = \frac{1}{n}$ for $x = \frac{1}{n} (n \in \mathbb{N})$ and G(x) = 0 elsewhere on [0, 1], show that $\int_{b}^{1} G = 0$.

7. If f and g are in $\Re[a, b]$, show that $\int kf = k \int f$, where $k \in \mathbb{R}$.

8. If ϕ : [a, b] $\to \mathbb{R}$ is a step function, show that $\phi \in \mathcal{R}[a, b]$.

P.T.O.

 $(6 \times 2 = 12)$

- 9. If $f \in \mathcal{R}[a, b]$ and if α, β, γ are any numbers in [a, b], show that $\int_{0}^{\infty} f = \int_{0}^{\infty} f + \int_{0}^{\infty} \int_{0}$ the sense that the existence of any two of these integrals implies the existence of the third and equality holds.
- 10. If $f \in \mathcal{R}[a, b]$ and if $[c, d] \subseteq [a, b]$ show that the restriction of f to [c, d] is in R[c, d].
- 11. Consider the function f defined by f(x) = x + 1 for $x \in [0, 1]$ rational and f(x) = 0 for $x \in [0,1]$ irrational. Show that f is not Riemann integrable.
- 12. If (X, d) is a metric space and $d': X \times X \to \mathbb{R}$ is defined by d'(x, y) = d(x, y)1 + d(x, y), prove that d' is a metric on X.
- 13. In any metric space (X, d), prove that every open ball is an open set.
- 14. Give an example for $(A \cup B)^{\circ} \neq A^{\circ} \cup B^{\circ}$, where $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$.

SECTION - C

Answer any 8 questions out of 12 questions, 4 marks each.

 $(8 \times 4 = 32)$

- 15. If $f \in \Re[a, b]$, show that the value of the integral is unique.
- 16. If f and g are in $\mathcal{R}[a, b]$, show that f + g is in $\mathcal{R}[a, b]$ and $\int (f + g) = \int f + \int g$.
- 17. Define the Thomae's function $h:[0,1] \to \mathbb{R}$ and prove that it is in $\mathbb{R}[0,1]$ with integral zero.
- 18. If f and g are in $\Re[a, b]$ and $f(x) \leq g(x)$ for all $x \in [a, b]$, show that $\int f \leq \int g$.
- 19. If $f: [a, b] \to \mathbb{R}$ is monotone on [a, b], show that $f \in \mathcal{R}[a, b]$.
- 20. If E is a finite set in [a, b] and there exist functions f, F: [a, b] $\to \mathbb{R}$ such that (i) F is continuous on [a, b] (ii) F'(x) = f(x) for all $x \in [a, b] \setminus E$ (iii) $f \in \mathcal{R}[a, b]$, show that f = F(b) - F(a).

K20U 0217

- 21. Evaluate $\int_{\frac{\pi}{4}}^{4} \frac{\sin \sqrt{t}}{4} dt$ using the Substitution theorem.
- 22. Let (f_n) be a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly on A to a function $f:A\to\mathbb{R}$. Show that f is continuous on A.
- 23. If R is the radius of convergence of $\sum a_n x^n$ and K is a closed, bounded interval contained in the interval of convergence. (-R, R), prove that the power series converges uniformly on K.
- 24. State and prove Minkowski's inequality.
- 25. Prove that every convergent sequence in a metric space is a Cauchy sequence.
- 26. Let (X, d) be a metric space and F be a subset of X. Prove that F is closed in X if and only if Fc is open in X.

SECTION - D

Answer any 2 questions out of 4. Each carries 6 marks.

 $(2 \times 6 = 12)$

- 27. If $f \in \mathcal{R}[a, b]$, show that f is bounded on [a, b].
- 28. Let $f:[a,b] \to \mathbb{R}$ and let $c \in (a,b)$. Prove that $f \in \mathcal{R}[a,b]$ if and only if its restrictions to [a, c] and [c, b] are both Riemann integrable.
- 29. Prove that the metric space (X, d), where X denote the space of all sequences $x = (x_1, x_2, ...)$ of real numbers for which $\left|\sum_{i=1}^{\infty} |x_i|^p\right|^{p} < \infty$ ($p \ge 1$) and d is the metric given by $d_p(x,y) = \left(\sum_{k=0}^{\infty} |x_k - y_k|^p\right)^k$, is a complete metric space.
- 30. Prove that each nonempty open subset of ℝ is the union of a countable family of distinct open intervals.