THALLON THALLON

K19U 0765

Reg. No. :

Name :

IV Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supp./Imp.)

Examination, April 2019

(2016 Admission Onwards)

BHM 401: ADVANCED REAL ANALYSIS AND METRIC SPACES

Time: 3 Hours

Total Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4)

- 1. Define a tagged partition. Give an example.
- 2. State first form of fundamental theorem.
- 3. Find $\lim \left(\frac{x^2 + nx}{n}\right)$ for $x \in \mathbb{I}$
- 4. Define complete metric space.
- 5. Let (X, d) be a metric space. Define the terms :
 - a) Open ball
 - b) Closed ball
 - c) Neighbourhood of $x_0 \in X$.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6×2=12)

- 6. Let $f:[0, 4] \to IR$ be defined by f(x) = 2 for $0 \le x \le 3$ and f(x) = 1 for $3 < x \le 4$. Find $\int_0^4 f dx$.
- 7. Let h(x) = x for $x \in [0, 2]$. Show that $h \in \Re [0, 2]$.
- 8. If f, $g \in \Re [a, b]$, then show that $f + g \in \Re [a, b]$.

P.T.O.

K19U 0765

- 9. Define radius of convergence of a power series. Illustrate it.
- 10. If J is a subinterval of [a, b] having end points c < d and $\varphi(x) = 1$ for $x \in J$ and $\varphi(x) = 0$ elsewhere in [a, b]. Then show that $\varphi \in \Re$ [a, b] and $\int_a^b \varphi dx = d c$.

-2-

- 11. Prove that a convergent sequence in a metric space is a Cauchy sequence.
- 12. Let (x, d) be a metric space. Define $d': X \times X \to \mathbb{R}$ by $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}$. Then prove that d' is a metric on X.
- 13. Show that in any metric space (X, d) each open ball is an open set.
- 14. Let F be a nonempty bounded closed subset of IR and let $\alpha = \inf F$ and $\beta = \sup F$. Then show that $\alpha \in F$ and $\beta \in F$.

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

 $(8 \times 4 = 32)$

- 15. If $f \in \Re [a, b]$ then show that f is bounded on [a, b].
- 16. State and prove Squeeze theorem.
- 17. If $f:[a,b] \to IR$ is continuous on [a,b] then show that $f \in \Re [a,b]$.
- State and prove Cauchy Criterion for uniform convergence of sequence of functions.
- 19. Let (f_n) be a sequence of continuous functions on a set $A \subseteq IR$ and suppose that (f_n) converges uniformly on A to a function $f: A \to IR$ then show that f is continuous on A.
- 20. If R is the radius of convergence of the power series $\sum a_n x^n$, then show that the series is absolutely convergent if |x| < R and is divergent if |x| > R.
- 21. State and prove Holder's inequality.
- 22. If a Cauchy sequence of points in a metric space (X, d) contains a convergent subsequence, then prove that the sequence converges to the same limit as the sequence.

K19U 0765

- 23. Define the following:
 - a) Discrete metric on a set X.
 - b) Usual metric on IR.
 - c) Euclidean metric on IRn.
 - d) Pseudometric on a set X.
 - e) Square summable sequences.
 - f) The space of all bounded sequences.
 - g) The space of all bounded functions.
 - h) Cauchy sequence.
- 24. Let Y be a subspace of a metric space (X, d), then show that every subset of Y that is open in Y is also open in X if and only if Y is open in X.
- 25. Show that a subset G in a metric space (X, d) is open if and only if it is the union of all open balls contained in G.
- Let (X, d) be a metric space and F be a subset of X, then show that F is closed in X if and only if F^c is open in X.

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2x6=12)

- 27. When we say that a function f: [a, b] → IR is Riemann integrable on [a, b]?
 If f ∈ ℜ [a, b], then show that the value of the integral is uniquely determined.
- 28. a) Prove that the function $f(x) = \frac{x}{1+x}$ is monotonically increasing.
 - b) If $f:[a,b] \to IR$ is monotone on [a,b] then show that $f \in \mathfrak{R}$ [a,b].
- 29. Show that the l_p space is complete.
- 30. Let (X, d) be a metric space. Then show that
 - i) o and X are open sets in (X, d).
 - ii) the union of any finite, countable or uncountable family of open sets is open.
 - iii) the intersection of any finite family of open sets is open.