110000110001000100010001
Reg. No. :
Name :
IV S
Time: 3 H
Answer a
1. What
2. What
3. What
4. State
5. What
6. What
7. State
8. Define
9. What
10. What
Answer ar
11. Find t
12. What

K18U 0315

emester B.Sc. Hon's (Mathematics) Degree (Supple./Improv.)

Examination, May 2018 BHM 402: ABSTRACT ALGEBRA - II (2013-15 Admissions)

lours

Max. Marks: 80

all the ten questions.

 $(10 \times 1 = 10)$

- do you mean by decomposable group?
- are the elements of $\mathbb{Z}_2 \times \mathbb{Z}_4$?
- are the elements of $\mathbb{Z}/5\mathbb{Z}$?
- first isomorphism theorem.
- do you mean by a subnormal series of a group?
- do you mean by action of a group on a set?
- Burnside's formula.
- e a p-group.
- is the reduced form of the word $a_2^3 a_2^{-1} a_3 a_1^2 a_1^{-7}$?
- do you mean by presentation of a group?

ny 10 short answer questions out of 14.

 $(10 \times 3 = 30)$

- the order of (8, 4, 10) in the group $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$.
- do you mean by normal subgroup? Write three equivalent conditions for a subgroup H of a group G to be a normal subgroup of G.
- 13. Prove that a factor group of a cyclic group is cyclic.

P.T.O.

K18U 0315

- 14. What do you mean by simple group? Give an example.
- 15. Let $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_3$ be the homomorphism such that $\phi(1) = 2$. Find kernal of ϕ .
- Give example for a series which is a subnormal series of the group, but not a normal series.
- 17. Prove that any two composition series of a group are isomorphic.
- 18. Let X be a G-set. Prove that G_x is a subgroup of G for each $x \in G$.
- 19. How many distinguishable necklaces (with no clasp) can be made using seven different colored beads of the same size?
- 20. Let G be a group of order p^n , p is a prime, and let X be a finite G-set. Show that $|X| = |X_G| \pmod{p}$.
- 21. Prove that every group of order 15 is cyclic.
- 22. Is $\{(3, 0), (0, 1)\}$ a basis for $\mathbb{Z} \times \mathbb{Z}$? Prove your assertion.
- Explain the idea of free group.
- 24. Prove that every group G' is a homomorphic image of a free group G.

Answer any 6 short answer questions out of 9.

 $(6 \times 5 = 30)$

- 25. Let H be a normal subgroup of a group G. Prove that the cosets of H form a group G/H under the operation (aH) (bH) = abH.
- 26. Prove that M is a maximal normal subgroup of G if and only if G/M is simple.
- 27. If N is a normal subgroup of G and if H is any subgroup of G, then prove that $H \lor N = HN = NH$.
- 28. If G has a composition series and if N is a proper normal subgroup of G, then prove that there exists a composition series containing N.
- 29. Let X be a G-set. Show that for each $g \in G$, the function $\sigma_g : X \to X$ defined by $\sigma_g(x) = gx$ for $x \in X$ is a permutation of X.

-3-

K18U 0315

- 30. State and prove second Sylow theorem.
- 31. Prove that for a prime number p, every group G of order p2 is abelian.
- 32. Let G be generated by $A = \{a_i/i \in I\}$ and let G' be any group. If a_i' for $i \in I$ are any elements in G', not necessarily distinct, then prove that there is atmost one homomorphism $\phi: G \to G'$ such that $\phi(a_i) = a_i'$.
- 33. Show that $(x, y : y^2x = y, yx^2y = x)$ is a presentation of the trivial group of one element.

Answer any one essay questions out of 2.

 $(1 \times 10 = 10)$

- 34. State and prove second and third isomorphism theorems.
- 35. Determine all groups of order 10 upto isomorphism.