	Reg. No.:	
	Name	:
	IV S	eme
	Time	: 3 H
	Ans	wer
	1.	Det
	2.	Giv
	3.	Fin
	4.	Fin
	5.	Def
	6.	Giv
	7.	Def
	8.	If G
	9.	Def
	10.	Def
	Ans	wer

K16U 1336

ester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improve.) Examination, May 2016

BHM 402: ABSTRACT ALGEBRA - II

lours

Max. Marks: 80

all the 10 questions.

 $(10 \times 1 = 10)$

- fine the direct product of the groups G_1, G_2, \ldots, G_n .
- ve the order of (1, 0) in $\mathbb{Z}_2 \times \mathbb{Z}_4$
- nd all proper nontrivial subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- nd the order of the factor group \mathbb{Z}_6 / <3>.
- fine the centre Z (G) of a group G.
- ve an example of a normal series of Z.
- fine a subnormal series of a group G.
- is a group and X is a G-set, define an orbit in X under G.
- fine the class equation of a group G.
- fine a free group and give an example.

any 10 short answer questions out of 14.

 $(10 \times 3 = 30)$

- 11. Examine whether is $\mathbb{Z}_3 \times \mathbb{Z}_3$ is cyclic.
- 12. Prove that the finite indecomposable abelian groups are exactly the cyclic groups with order a power of a prime.
- 13. If H is a normal subgroup of a group G, prove that the cosets of H in G form a group under the binary operation (aH) (bH) = (ab) H.
- 14. Prove that a factor group of a cyclic group is cyclic.

P.T.O.

. Max. Marks: 80

- 15. If G has a composition series and if N is a proper normal subgroup of G, show that there exists a composition series containing N.
- 16. If $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_3$ is the homomorphism such that $\phi(1) = 2$, find
 - i) Kernel K of o and
 - ii) List the cosets in \mathbb{Z}_{12}/K showing the elements in each case.
- 17. Find any three composition series of Z₄₈.
- 18. If X is a G-set and $\sigma_a: X \to X$ defined by $\sigma_a(x) = gx$, $x \in X$, is a permutation of X, show that $\phi: G \to S_x$ defined by $\phi(g) = \sigma_g$ is a homomorphism.
- 19. If X is a G-set, show that $G_v = \{g \in G/gx = x\}$ is a subgroup of G, for each $x \in X$.
- 20. Suppose G is a group of order p^n and X is a finite G-set. Show that $|X| = |X_G|$ (mod p).
- 21. Prove that every group of prime-power order is solvable.
- 22. Prove that every group of order 15 is cyclic.
- 23. Prove that Z_n is not free abelian.
- 24. Show that $(x, y : y^2 x = y, y x^2 y = x)$ is a presentation of the trivial group of one element.

Answer any 6 short essay questions out of 9.

 $(6 \times 5 = 30)$

- 25. Prove that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is a cyclic group.
- 26. If m divides the order of a finite abelian group G, prove that G has a subgroup of order m.
- 27. Suppose G is a group and H is a subgroup of G. Prove that the following conditions are equivalent
 - i) $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$ aroun under the binary operation (gH) (I
 - ii) $qHq^{-1} = H$ for all $q \in G$
 - iii) gH = Hg for all $g \in G$.

- 28. If N is a normal subgroup of G and H is any subgroup of G, show that $H \lor N = HN = NH$.
- If X is a G-set and x∈ X, show that |Gx| = (G=Gx).
- 30. If H is a p-subgroup of a finite group G, show that $(N[H]: H) \equiv (G:H) \pmod{p}$.
- 31. Suppose G is a group containing normal subgroups H and K such that $H \cap K = \{e\}$ and $H \vee K = G$. Show that G is isomorphic to $H \times K$.
- 32. If H and K are finite subgroups of a group G, show that $|HK| = \frac{(|H|)(|K|)}{|H| |K|}$
- 33. If $X = \{x_1, x_2, ..., x_r\}$ is a basis for a free abelian group G and $t \in \mathbb{Z}$, then for $i \neq j$, show that the set $Y = \{x_1, ..., x_{i-i}, x_i + tx_i, x_i, x_{i+1}, ..., x_r\}$ is also a basis for G.

Answer any one essay question out of 2.

 $(1 \times 10 = 10)$

- 34. If G is a group, prove that the set of all commutators a b a⁻¹b⁻¹ for a, b∈ G generates a subgroup C of G. Prove also that C is normal subgroup of G, and if N is a normal subgroup of G, then G/N is abelian if and only if $C \le N$.
- State and prove the first Sylow theorem.