M 9229

4-

- 32. For a prime number p, prove that every group G of order p² is abelian.
- 33. If G is a finitely generated abelian group with generating set $\{a_1, a_2, ..., a_n\}$, prove that $\phi: \mathbb{Z} \times \mathbb{Z} \times \times \mathbb{Z} \to G$ defined by $\phi(h_1, h_2, ..., h_n) = h_1 a_1 + h_2 a_2 + ... + h_n a_n \text{ is a homomorphism.}$

Answer any one essay question out of 2:

 $(1 \times 10 = 10)$

- 34. Prove that $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to \mathbb{Z}_{mn} if and only if m and n are relatively prime.
- 35. If G is a finite group and p divides |G|, p is a prime, show that G has an element of order p and consequently, a subgroup of order p.

ADDINING

M 9229

IV Semester B.Sc. (Hon's) Degree (Mathematics (Regular)) Examination, May 2015 BHM 402 : ABSTRACT ALGEBRA – II

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions:

Reg. No.:

 $(10 \times 1 = 10)$

- 1. Define the Cartesian product of the sets S₁, S₂,, S_n.
- 2. Define a decomposable group.
- 3. Find the order of the element (2, 6) in $\mathbb{Z}_4 \times \mathbb{Z}_{12}$.
- 4. State the fundamental homomorphism theorem.
- 5. Define a simple group and give an example.
- 6. Give an example of a normal series of Z.
- 7. State the Schreier Theorem.
- 8. Define an action of a group G on a set X.
- 9. Find the reduced form of the word $a^2b^{-1}b^3a^3c^{-1}c^4b^{-2}$.
- 10. Verify whether $\{(2, 1), (4, 1)\}\$ is a basis for $\mathbb{Z} \times \mathbb{Z}$.

P.T.O.

Answer any 10 short answer questions out of 14:

 $(10 \times 3 = 30)$

- 11. If a_i is of order r_i in the group G_i , i = 1, 2, ..., n, prove that the order of $(a_1, a_2, ..., a_n)$ in $\prod_{i=1}^n G_i$ is the least common multiple of all the r_i .
- 12. Find the order of (8, 4, 10) in the group $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$.
- 13. If m is a square free integer, prove that every abelian group of order m is cyclic.
- 14. If H is a normal subgroup of a group G, prove that $\gamma = G \rightarrow G_H$ given by $\gamma(x) = xH$ is a homomorphism with kernel H.
- If G has a composition series and if N is a proper normal subgroup of G, show that there exists a composition series containing N.
- If φ: Z₁₂ → Z₃ is the homomorphism such that φ(1) = 2, find (a) the kernel of φ and (b) list the cosets in Z₁₂/K showing the elements in each coset.
- 17. Give isomorphic refinements of the two series $\{0\} < 10\mathbb{Z} < \mathbb{Z}$ and $\{0\} < 25\mathbb{Z} < \mathbb{Z}$.
- 18. If G is a group and X is a G-set, show that the function $\sigma_g: X \to X$ defined by $\sigma_g(x) = gx$, for $x \in X$, is a permutation of X.
- 19. If G is a group and X is a G-set, show that $G_x = \{g \in G/gx = x\}$ is a subgroup of G, for each $x \in X$.
- 20. Show that the relation '~' defined on a G-set X given by $x_1 \sim x_2$ if and only if there exist $g \in G$ such that $gx_1 = x_2$, for $x_1, x_2 \in X$, is an equivalence relation.
- 21. If H is a finite subgroup of a group G and if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$, show that $g \in N[H]$.

- 22. If p and q are distinct primes with p < q, show that every group G of order pq has a single subgroup of order q, which is normal in G.
- 23. Prove that \mathbb{Z}_n is not free abelian.
- 24. Prove that every group G' is a homomorphic image of a free group G.

Answer any 6 short essay questions out of 9:

(6×5=30)

25. If
$$G_1$$
, G_2 , ..., G_n are groups and if for $(a_1, a_2, ..., a_n)$, $(b_1, b_2, ..., b_n)$ in $\prod_{i=1}^n G_i$ their product is defined as $(a_1b_1, a_2b_2, ..., a_nb_n)$, show that $\prod_{i=1}^n G_i$ is a group.

- 26. If m divides the order of a finite abelian group G, prove that G has a subgroup of order m.
- 27. If G is a group and H is a subgroup of G, prove that (aH) (bH) = (ab)H is well defined if and only if H is a normal subgroup of G.
- 28. If N is a normal subgroup of a group G and $\gamma: G \to G_N$ is a canonical homomorphism, prove that the map ϕ from the set of normal subgroups of G containing N to the set of normal subgroups of G_N given by $\phi(L) = \gamma(L)$ is one-to-one and onto.
- 29. If X is a G-set, show that $|G_x| = (G : G_x)$, $x \in X$.
- 30. If G is a finite group, X is a finite G-set and r is the number of orbits in X, show that $r \cdot |G| = \sum_{g \in G} |X_g|$.
- 31. If P₁ and P₂ are Sylow p-subgroups of a finite group G, show that P₁ and P₂ are conjugate subgroups of G.