K19U 3016

29. Verify the circulation form of Green's theorem on the annular ring

(4)

$$R: h^2 \le x^2 + y^2 \le 1,0 < h < 1 \text{ if } M = \frac{-y}{x^2 + y^2}, N = \frac{x}{x^2 + y^2}$$

30. Verify Stokes theorem for $\vec{t}=(x^2+y^2)i-2xy\,j$ taken around the rectangle

bounded by x = a, x = -a, y = 0 and y = 6.

003735

K19U 3016

Reg. No. :
Name :

III Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)

Examination, November-2019

(2016 Admission Onwards)

BHM 302: VECTOR CALCULUS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. $(4 \times 1 = 4)$

- Define torsion of a curve.
- 2. State Fubini's theorem (First form)
- **3.** Find the gradient field of f(x, y, z) = xyz.
- **4.** Write the formula for the workdone by a force \vec{f} to move a particle from a point A to another point B.
- 5. Check whether the vector $\vec{F} = (2x-3)i zj + \cos zk$ is conservative or not.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 mark.

 $(6 \times 2 = 12)$

- **6.** Explain the idea of limits and continuity of a vector function $\vec{r}(t)$ at a point t_0 .
- 7. Evaluate $\int (\cos t \, i + j 2t \, k) \, dt$.
- **8.** Find the length of one turn of the helix $\cos t i + \sin t j + t k$

P.T.O.

K19U 3016

- 9. Calculate $\iint_{\mathcal{B}} (1-6x^2y) dx dy$ where R is $0 \le x \le 2, -1 \le y \le 1$.
- 10. Find the area enclosed by the lemniscate $r^2 = 4\cos 2\theta$.
- 11. A fluid's velocity field is $\vec{f} = xi + zj + yk$. Find the flow field along the helix $\vec{r}(t) = \cos t \, i + \sin t \, j + y \, k$, $0 \le t \le \frac{\pi}{2}$.

(2)

- 12. Find the workdone by the conservative field $\vec{f} = yzi + xzj + xyk$ along any smooth curve C joining the points (-1, 3, 9) to (1, 6, -4).
- 13. State Green's theorem.
- **14.** Find curl \vec{f} if $\vec{f} = (x^2 y)i + 4zj + x^2k$.

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8×4=32)

- **15.** The vector $\vec{r}(t) = (3\cos t)i + (3\sin t)j + t^2k$ gives the position of a moving body at time t. Find the body's speed and direction when t = 2. At what time, if any, are the body's velocity and acceleration orthogonal?
- **16.** Find the unit tangent vector and unit normal vector for the circular motion $\vec{r}(t) = \cos 2t \ i + \sin 2t \ j$.
- 17. Find the derivative of $f(x,y) = x^2 + xy$ at (1,2) in the direction of the vector i + j.
- 18. Find the volume of the prism whose base is the triangle in the xy plane bounded by the x-axis and the lines y = x and x = 1 and whose top lines in the plane z = 3 x y
- 19. Find the polar moment of inertia about the origin of a thin plate of density $\delta(x,y) = 1$ boundad by the quarter circle $x^2 + y^2 = 1$ in the first quadrant.

- 20. Find the volume of the upper region D cut from the solid sphere $\rho \le 1$ by the cone $\phi = \frac{\pi}{3}$.
- 21. Integrate $f(x, y, z) = x 3y^2 + z$ along the line segment from origin to (1,1,0) and then to (1,1,1).
- **22.** What do you mean by circulation of a vector field around a closed curve? Find the circulation of $\vec{F} = (x y)i + xj$ around the circle $\vec{r}(t) = (\cos t)i + (\sin t)j, 0 \le t \le 2\pi$.
- 23. Show that y dx + x dy + 4 dz is exact and evaluate the integral $\int_{(1,1)}^{(2,3,-1)} y dx + x dy + 4 dz \text{ over the line segment from (1,1,1) to (2,3,-1)}.$
- **24.** Find the area of the surface cut from the bottom of the paraboloid $x^2 + y^2 z = 0$ by the plane z = 4.
- **25.** Find the flux of $\vec{F} = yzj + z^2k$ outward through the surface S cut from the cylinder $y^2 + z^2 = 1, z > 0$, by the planes x = 0 and x = 1.
- **26.** Using Stoke's theorem evaluate $\int_{c} \vec{F} \cdot d\vec{r}$, if $\vec{F} = xzi + xyj + 3xzk$ and C is the boundary of the portion of the plane 2x + y + z = 2 in the first octant, traversed counterclockwise as views from above.

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks. $(2 \times 6 = 12)$

- State and prove differentiation rules for dot product and cross product of two vector functions.
- **28.** Sketch the region of integration for the integral $\int_0^2 \int_{x^2}^{2x} (4x+2) dy \, dx$, with respect to the equivalent integral with the order of integration reversed and hence evaluate the integral.