N GEN	5	1
ST. BRE	73x (55)	

K16U 2582

Reg. No.:

Name :

III Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)

Examination, November 2016

BHM 302: VECTOR CALCULUS

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions:

 $(10 \times 1 = 10)$

- 1. Find the equation for the plane through (– 3, 0, 7) and perpendicular to $\vec{v}=5\hat{i}+2\hat{j}-\hat{k}$.
- 2. What is the relation connecting spherical coordinates and cylindrical coordinates?
- 3. Define torsion and binormal vector.
- 4. What is the area of a closed and bounded region R in polar form?
- 5. Define average value of a function in space.
- 6. Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of the transformation $x = u \cos v$, $y = u \sin v$.
- 7. What do you mean by flux of a vector field across a curve ?
- 8. State Green's theorem in plane.
- 9. Prove that curl grad f = 0.
- 10. State Gauss divergence theorem.

Answer any 10 short answer questions out of 14:

(10×3=30)

- 11. Show that $\vec{u}(t) = \sin t \hat{i} + \cos t \hat{j} + \sqrt{3} \hat{k}$ has constant length and is orthogonal to its derivative.
- 12. Find the curvature of $\vec{r}(t) = a \cos t \hat{i} + a \sin t \hat{j} + b t \hat{k}$, $a, b \ge 0$, $a^2 + b^2 \ne 0$.

P.T.O.

K16U 2582

- What do you mean by directional derivative? Explain the geometric interpretation of the directional derivative.
- 14. Find the equation of tangent to the ellipse $\frac{x^2}{4} + y^2 = 2$ at the point (-2, 1).
- 15. Integrate $f(x, y) = y \cos xy$ over the rectangle $0 \le x \le \pi$, $0 \le y \le 1$.
- 16. Change $\int_{1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$ into an equivalent polar integral and hence evaluate it.
- 17. Evaluate $\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz dy dx$.
- 18. Evaluate $\int_C (x-y+z-2) ds$ where C is the straight line segment x=t, y=1-t, z=1 from (0, 1, 1) to (1, 0, 1).
- 19. Show that $\vec{F} = (2x 3)\hat{i} z\hat{j} + \cos z\hat{k}$ is not conservative.
- 20. Find the divergence and curl of $\vec{F} = (x^2 y)\hat{i} + (xy y^2)\hat{j}$.
- 21. Define gradient of a scalar field. Find the gradient field of g(x, y, z) = xy + yz + xz.
- 22. Using Green's theorem, find the area of the ellipse $\vec{r} = a \cos t \hat{i} + b \sin t \hat{j}, 0 \le t \le 2\pi$.
- 23. Find a parametrization of the cylinder $x^2 + (y 3)^2 = 9$, $0 \le z \le 5$.
- 24. Generalize Green's theorem to three dimensions and explain their relationship to the equations in Stoke's theorem and Divergence theorem.

Answer any 6 short answer questions out of 9:

 $(6 \times 5 = 30)$

- 25. Explain hyperboloid of two sheet $\frac{z^2}{c^2} \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,
- 26. The velocity of a particle moving in space is $\cos t\hat{i} \sin t\hat{j} + \hat{k}$. Find the particle's position \vec{r} as a function of t if $\vec{r} = 2\hat{i} + \hat{k}$ when t = 0.

K16U 2582

- 27. Change the order of integration and hence evaluate $\int_0^2 \int_{x^2}^{2x} (4x + 2) dy dx$.
- 28. Find the volume of the upper region D cut from the solid sphere $\rho \le 1$ by the cone $\phi = \frac{\pi}{3} \, .$
- 29. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y} (y-2x)^{2} dy dx$.
- 30. Find the flux of $\vec{F} = (x y)\hat{i} + x\hat{j}$ across the circle $x^2 + y^2 = 1$ in the xy-plane.
- 31. Using Green's theorem, evaluate the integral $\int_C xydy y^2dx$ where C is the square cut from the first quadrant by the lines x = 1 and y = 1.
- 32. Find the flux $\vec{F} = yz\hat{j} + z^2\hat{k}$ outward through the surface S cut from the cylinder $y^2 + z^2 = 1$, $z \ge 0$, by the planes x = 0 and x = 1.
- 33. Integrate $g(x, y, z) = x^2$ over the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$.

Answer any one essay questions out of 2:

 $(1 \times 10 = 10)$

34. Evaluate:

$$\int_0^3 \int_0^4 \int_{x=y/2}^{x=(y/2)+1} \left(\frac{2x-y}{2} + \frac{z}{3} \right) dx \ dy \ dz$$

by applying the transformation $u = \frac{2x - y}{2}$, $v = \frac{y}{2}$, $w = \frac{z}{3}$ and integrating over an appropriate region in uvw-space.

35. Find the center of mass of a thin shell of constant density δ cut form the cone $z = \sqrt{x^2 + y^2}$ by the planes z = 1 and z = 2.