K17U 2669

32. Determine the eigen spaces corresponding the eigen values of the

operator.
$$T \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 4a_1 + a_3 \\ 2a_1 + 3a_2 + 2a_3 \\ a_1 + 4a_3 \end{pmatrix}$$
 on IR³

33. In C([0, 1]) with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Compute $\langle f, g \rangle, ||f||$ and ||f+g||, where $f(t)=t^0$ and $g(t)=e^t$. Then verify Cauchy's inequality and triangular inequality. (5x6=30)

Answer any one question from the questions 34 and 35. This question carries 10 marks.

- 34. Let V and W be vector spaces and let T: V → W be linear. If V is finite dimensional, then prove that R(T) is finite dimensional and nullity (T) + rank(T) = dim V.
- 35 a) State and prove Gram-Schmidth orthogonalization process.
 - b) Use Gram-Schmidth orthogonalization process obtain an orthonormal basis corresponding to the set {(1, 1, 0), (2, 0, 1), (2, 2, 1)}.
 (10x1=10)

K17U 2669

Reg. No.:

Name:

III Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)
Examination, November 2017
(2013-15 Admissions)

BHM 304 : LINEAR ALGEBRA - I

Time: 3 Hours

Max. Marks: 80

All the first 10 questions are compulsory. They carry 1 mark each.

- 1. How many elements are there in the vector space $M_{m\times n}$ (\mathbb{Z}_2)?
- 2. Is the set $W = \{f \in P(F) \mid f = 0 \text{ or } f \text{ has degree } n\}$ a subspace of P(F) if $n \ge 1$? Justify your answer.
- 3. Determine whether the vector (3, 4, 1) can be written as a linear combination of (1, -2, 1) and (-2, -1, 1).
- 4. What is the dimension of the vector space $M_{m\times n}$ (IR) ?
- 5. Check whether T : $IR^3 \rightarrow IR^2$ by $T(a_1, a_2, a_3) = (a_1 a_2, 2a_3)$ a linear transformation or not.
- 6. Find the matrix with respect to the standard basis for the transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(a_1, a_2) = (a_1 + 3a_2, 0, 2a, -4a_2)$.
- 7. Does there exists an invertible linear transformation from IR ³ onto IR ² ? Justify your answer.
- 8. Find all the eigen values of the matrix $A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$.
- 9. Find the conjugate transpose of the matrix $A = \begin{bmatrix} i & 1+2i \\ 2 & 3+4i \end{bmatrix}$.
- 10. Define an orthonormal basis in an inner product space.

 $(1 \times 10 = 10)$

P.T.O.

Answer any 10 questions from among the questions 11 to 24. These questions carries 3 marks each.

- 11. Let V denote the set of all ordered pairs of real numbers. If (a₁, a₂) and (b₁, b₂) are elements of V and C an element of F, define (a₁, a₂) + (b₁, b₂) = (a₁ + b₁, a₂b₂) and c(a₁, a₂) = (ca₁, a₂). Is V a vector space under these operations? Justify your answer.
- Is the set of all differentiable real valued functions defined on IR a subspace of C(IR)? Justify.
- 13. Find span $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ in $M_{2\times 2}(F)$.
- Show that a subset W of a vector space V is a subspace of V if and only if span (W) = W.
- 15. Show that the vectors (1, -3, 2), (4, 1, 0) and (0, 2, -1) is a basis of IR 3.
- 16. Do the polynomials $x^3 2x^2 + 1$, $4x^2 x + 3$ and 3x 2 generate $P_3(IR)$? Justify.
- 17. Suppose that T: $\mathbb{R}^2 \to \mathbb{R}^2$ is linear and that T(1, 0) = (1, 4) and T(1, 1) = (2, 5). What is T(2, 3)?
- 18. Find the null space N(T) of the transformation T : $IR^2 \rightarrow IR^3$ by T(a₁, a₂) = (a₁ + a₂, 0, 2a₁ a₂).
- 19. Find the matrix of the linear transformation $T: P_3(IR) \to P_3(IR)$ by T(f) = f' with respect to the basis $\beta = \{1, x, x^2, x^3\}$. Also find the null space of T.
- 20. Find the characteristic polynomial of the linear transformation $T: P_2(IR) \rightarrow P_2(IR)$ by T(f) = f'.
- 21. Find the eigen values of the matrix $A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$.

- 22. Show that the matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ in $M_{2\times 2}(IR)$ is diagonalizable.
- 23. Use Cayley-Hamiton theorem, find the square of the matrix $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$.
- 24. Let V be an inner product space. Show that $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$. (3×10=30)

Answer any 6 questions from among the questions 25 to 33. These questions carry 5 marks each.

- 25. Let W be a subspace of a finite-dimensional vector space V. Then prove that W is finite-dimensional and $dim(W) \leq dim(V)$.
- 26. Let W_1 and W_2 be subspaces of V having dimension m and n respectively with $m \ge n$. Then
 - a) Show that $dim(W_1 \cap W_2) \le n$ and $dim(W_1 + W_2) \le m + n$.
 - b) Give examples of subspaces W_1 and W_2 of IR^3 for which $dim(W_1 \cap W_2) = n$ and $dim(W_1 + W_2) = m + n$.
- Show that any maximal linear independent set in a finite-dimensional vector space is a basis.
- 28. Define T: $P_2(IR) \rightarrow M_{2\times 2}(IR)$ by $T(f) = \begin{pmatrix} f(1) f(2) & 0 \\ 0 & f(0) \end{pmatrix}$. Find a basis for R(T).
- 29. Prove that a linear transformation is one-to-one if and only if $N(T) = \{0\}$.
- 30. Show that F^2 is isomorphic to $P_1(F)$.
- 31. Show that non-zero eigen vectors corresponding to distinct eigen values of a operator is linearly independent.