leg. No.:	
laı	ne:
III	Semester B.Sc. Hon's (Mathematics) Degr Examination, November BHM304 : LINEAR ALGEB
im	e : 3 Hours
Ar	swer all the ten questions.
1.	Define subspace of a vector space.
2.	What do you mean by spanning set of a vector span
3.	What do you mean by basis of a vector space?
4.	What is the dimension of the vector space of complereal numbers? Also give a basis this vector space.
5.	If T is a linear transformation, then prove that T(0)
3.	What do you mean by nullity of a linear transformat
7.	What do you mean by similar matrices?
3.	Define eigen vectors of a linear transformation.
Э.	Define an inner product.

K16U 2584

ree (Reg. Supple./Improv.) 2016 BRA - I

Max. Marks: 80

(10×1=10)

- ace?
- lex numbers over the field of
- = 0.
- tion?

- 10. What do you mean by orthogonal set?

Answer any 10 short answer questions out of 14.

 $(10 \times 3 = 30)$

- 11. Prove that the additive inverse of an element in a vector space is unique.
- 12. Prove that set of all symmetric matrices of order n is a subspace of the vector space of all square matrices of order n with entries from a field F.
- 13. Determine whether the set $\{(1, -1, 2), (2, 0, 1), (-1, 2, -1)\}$ is linearly dependent or not.

K16U 2584

- 14. Let V be a vector space with dimension n. Prove that every linearly independent subset of V can be extended to a basis for V.
- 15. Prove that $\{(1, 0, 0, -1), (0, 1, 0, -1), (0, 0, 1, -1), (0, 0, 0, 1\}$ is a basis for \mathbb{R}^4
- 16. Define $T: \mathbb{R}^2 \to \mathbb{R}^3$ by T(x, y) = (x + y, 0, 2x y). Check whether T is linear or not,
- 17. Let V, W and Z be vector spaces over the same field F and let T: V → W and U: W → Z be linear. Prove that UT: V → Z is linear.
- 18. Prove that P₃(R), the set of all polynomials of degree less than or equal to 3 over R is isomorphic to M_{2×2} (R).
- 19. Let $\beta = \{(1, 0), (0, 1)\}$ and $\beta' = \{(a_1, a_2), (b_1, b_2)\}$ be the ordered bases for R². Find the change of coordinate matrix that changes β' coordinates into β coordinates.
- 20. Let V be a finite dimensional vector space and let $x \in V$. If $\hat{x}(f) = 0$ for all $f \in V^*$, then prove that x = 0.
- 21. Find the eigen values of $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.
- 22. Let T be a linear operator on P(R) defined by T(f(x)) = f'(x). Find an ordered basis for the T-cyclic subspace generated by x^2 .
- 23. State and prove Triangle Inequality in an inner product space.
- 24. Let T be a linear operator on an inner product space V and suppose that $\|T(x)\| = \|x\|$ for all x. Prove that T is one-to-one.

Answer any 6 short answer questions out of 9:

 $(6 \times 5 = 30)$

- 25. Prove that intersection of two subspaces of a vector space is again a subspace. What about the union of two subspaces? Justify your answer.
- 26. Let u and v be distinct vectors in a vector space V. Show that {u, v} is linearly dependent if and only if u or v is a multiple of other.

-3-

27. Let V be a vector space and S a subset that generates V. If β is a maximal linearly independent subset of S, then prove that β is a basis for V.

- 28. Let T: P₃(R) → P₂(R) be a linear transformation defined by T(f(x)) = f'(x). Let β and γ be the standard ordered bases for P₃(R) and P₂(R), respectively. Compute [T]₂^γ.
- 29. Let V be a finite dimensional vector space and define ψ : $v v^{**}$ by $\psi(x) = \hat{x}$. Show that ψ is an isomorphism.
- 30. Let T be a linear operator on a finite dimensional vector space V and let χ be an eigen value of T having multiplicity m. Prove that $1 \le \dim(E_{\chi}) \le m$.
- 31. Verify Cayley-Hamilton theorem for $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(a,b) = (a+2b, -2a+b).
- 32. Using Gram-Schmidt process obtain an orthonormal basis for span {1. x, x²} in P₂ (R), the set of all polynomials of degree less than or equal to 2 over R.
- 33. If W is any subspace of a vector space V, prove that dim $(V) = dim(W) + dim(W^{\perp})$.

Answer any one essay question out of 2:

 $(1 \times 10 = 10)$

K16U 2584

34. State and prove dimension theorem.

35. Let $A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{bmatrix}$. Find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.