1 (0.000) 0.000 (0.000) (0.000) (0.000)

K15U 0623

Reg.	No.	:	

Name:.....

III Semester B.Sc. Hon's (Maths) Degree (Reg./Supple./Improve.)

Examination, November 2015

BHM 304: LINEAR ALGEBRA – I

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions:

 $(10 \times 1 = 10)$

- 1. Give an example for a vector space.
- 2. What do you mean by generating set of a vector space ?
- 3. What do you mean by dimension of a vector space?
- 4. What is the standard basis of P(F), the set of all polynomials with coefficients from F?
- 5. Define a linear transformation.
- 6. What do you mean by rank of a linear transformation?
- 7. Define isomorphism between two vector spaces.
- 8. Define Eigen values of a linear transformation.
- 9. Define a norm.
- 10. Give an example for an orthonormal set in R3.

Answer any 10 short answer questions out of 14.

 $(10 \times 3 = 30)$

- 11. State and prove cancellation law for vector addition.
- 12. Prove that set of all $n \times n$ matrices having trace equal to zero is a subspace of the $M_{n \times n}(F)$, the set of all square matrices of order n with entries from a field F.

P.T.O.

- 13. Prove that {(1, 0, 0, −1), (0, 1, 0, −1), (0, 0, 1, −1), (0, 0, 0, 1)} is linearly independent in R⁴.
- 14. Let V be a vector space with dimension n. Prove that any linerally independent subset of V that contains exactly n vectors is a basis for V.
- 15. Prove that $\left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}$ is a basis for $M_{2\times 2}(R)$.
- 16. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = (x+1, y). Check whether T is linear or not?
- 17. Let A be ab $m \times n$ matrix and B be an $n \times p$ matrix. For each $j (1 \le j \le p)$ let u_j and v_j denote the jth columns of AB and BA respectively. Prove that $u_j = Av_j$.
- 18. Prove that F^2 is isomorphic to $P_1(F)$, the set of all first degree polynomials over F.
- 19. Let $\beta = \{(2, 5), (-1, -3)\}$ and $\beta' = \{(1, 0), (0, 1)\}$ be the ordered bases for R². Find the change of coordinate matrix that changes β' -coordinates into β -coordinates.
- 20. Let β = {(1, 0, 1), (1, 2, 1), (0, 0, 1)} be an ordered basis for R³. Find explicit formulas for vectors of the dual basis β * for V*.
- 21. Let $A \in M_{n \times n}(F)$. Prove that a scalar λ is an Eigen value of A if and only if $\det (A \lambda I_n) = 0$.
- 22. Let T be a linear operator on R^3 defined by T(a, b, c) = (-b + c, a + c, 3c). Find an ordered basis for the T-cyclic subspace generated by the vector $e_1 = (1, 0, 0)$.
- 23. State and prove Cauchy-Schwarz Inequality in an inner product space.
- 24. What do you mean by orthogonal complement of a subset of an inner product space? What is the orthogonal complement of $S = \{(0, 0, 1)\}$ in \mathbb{R}^3 ?

Answer any 6 short answer questions out of 9:

(6×5=30)

- 25. Let V be a vector space and W a subset of V. Prove that W is a subspace of V if and only if a) $0 \in W$, b) $x + y \in W$ whenever $x \in W$ and $y \in W$ and c) $kx \in W$ whenever $k \in F$ and $x \in W$.
- 26. Let u and v be distinct vectors in a vector space V. Show that {u, v} is linearly dependent if and only if u or v is a multiple of other.
- 27. Let W be a subspace of a finite dimensional vector space V. Then prove that W is finite dimensional and $dim(W) \le dim(V)$.
- 28. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by T(x, y) = (x + 3y, 0, 2x 4y). Let β and γ be the standard ordered bases for \mathbb{R}^2 and \mathbb{R}^3 , respectively. Compute $[T]_{\beta}^{\gamma}$.
- 29. Let V be a finite dimensional vector space and define $\psi: V \to V^{**}$ by $\psi(x) = \hat{x}$. Show that ψ is an isomorphism.
- 30. Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$.
- 31. State and prove Cayley-Hamilton theorem for linear operators.
- 32. Using Gram-Schmidt process obtain an orthonormal basis for span {(1, 0, 1, 0), (1, 1, 1, 1), (0, 1, 2, 1)} in R⁴.
- 33. Suppose that $S = \{v_1, v_2, ..., v_k\}$ is an orthonormal set in an n-dimensional inner product space V. Prove that S can be extended to an orthonormal basis for V.

Answer any one essay questions out of 2:

 $(1 \times 10 = 10)$

- 34. State and prove dimension theorem.
- 35. Let T be a linear operator on $V = P_2(R)$ defined by $T(f(x)) = f(1) + f'(0) x + (f'(0) + f''(0))x^2$. Test T for diagonalizability and if T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.