		9.0		
~				

COLT BREAVEN

K16U 2583

Reg. No.:....

Name :

III Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)

Examination, November 2016

BHM 303: DIFFERENTIAL EQUATIONS

Time: 3 Hours Max. Marks: 80

Answer all the ten questions.

 $(10 \times 1 = 10)$

- 1. Solve $y' = y^2 e^{-x}$.
- 2. Examine whether the differential equation $2 \sin (y^2)dx + xy \cos (y^2)dy = 0$ is exact.
- 3. Give the general solution of y'' + 2y' + 6y = 0.
- 4. If $y_1 = e^x$, $y_2 = xe^x$ are solution of y'' 2y' + y = 0, find their Wronskian.
- 5. Give the solution of the linear equation $\frac{dy}{dx} + P(x)y = Q(x)$, where P(x) and Q(x) are the variable functions in x.
- 6. Define an integrating factor of a differential equation.
- 7. State the formula in Euler's method for solving the initial value problem $\frac{dy}{dx} = f(x, y), \ y(x_0) = y_0.$
- 8. If the characteristic equation of the differential equation y'' + ay' + by = 0 has complex roots, write the general solution.
- 9. Obtain the auxiliary equation of the Euler-Cauchy equation $x^2y'' + axy' + by = 0$.
- 10. State Adams-Bashforth predictor formula for solving y' = f(x, y), $y(x_0) = y_0$.

P.T.O.

K16U 2583

Answer any ten short answer questions out of 14.

 $(10 \times 3 = 30)$

11. Solve:
$$y' = -\frac{y}{x}$$
, $y(1) = 1$.

- 12. Find a value of α for which the equation $2xy^3 3y (3x + \alpha x^2y^2 2\alpha y)y' = 0$ is exact.
- 13. Find the orthogonal trajectory of xy = c.
- 14. Solve $(4xy + 2x) dx + (2x^2 + 3y^2)dy = 0$.
- 15. Show that $y = x^2$ and y = 1 are solutions of the equation y''y xy' = 0, where as their sum is not a solution.
- 16. Solve $y' \frac{3y}{x} = 2x^2$.
- 17. Find a general solution of the equation $x^2y'' + xy' + y = 0$.
- 18. Solve: $y'' + 2y' + 101y = 10.4e^x$.
- 19. Determine the type and stability of the critical point of the system $y_1' = y_2, \ y_2' = -9y_1$.
- 20. Solve the equation y'' 9y = 0 by converting it to two system of first order equation.
- 21. Explain the modified Euler's method for the solution of the initial value problem $y' = f(x, y), y(x_0) = y_0$.
- 22. Use Runge-Kutta fourth order formula to find y(0.2) given that $y' = \frac{y^2 x^2}{x + 2y}, \ y(0) = 1.$
- 23. State Milne's predictor-corrector formula for the solution of the problem $y' = f(x, y), y(x_0) = y_0$.
- 24. If $y' = \frac{x^2}{y^2 + 1}$, y(0) = 0, using Picard's method, find $y^{(1)}$.

K16U 2583

Answer any six short essay question out of 9.

 $(6 \times 5 = 30)$

25. Solve:
$$(1 + y + 2x) y' = 1 - 2y - 4x$$
.

26. Solve:
$$y' + 2y = y^2$$
.

27. If
$$\frac{dy}{dx} = xy + y^2$$
, $y(0) = 1$, find $y(0.1)$ and $y(0.2)$ by Taylor series method.

- 28. Reduce to first order and solve the differential equation $x^2y'' xy + y = 0$, where $y_1 = x$ is one solution.
- 29. Solve: $(x^2 D^2 3xD + 3) y = 3 \ln x 4$, y(1) = 0, y'(1) = 1.
- 30. Solve $(D^2 + 1) y = e^{-x}$, y(0) = -1, y'(0) = -1.
- 31. Solve $y'' + 2y' + y = e^{-x} \cos x$.
- 32. Find the general solution of $y'' + y = \sec x$.
- 33. Find a general solution of the system of equation $y'_1 = -3y_1 + y_2$, $y'_2 = y_1 3y_2$.

Answer any one essay question out of two.

 $(10 \times 1 = 10)$

- 34. Given the problem y' + y = 0, y(0) = 1, find y(0.1), y(0.2) and y(0.3) by fourth-order Runge-Kutta formula and hence obtain y(0.4) by Adam's formulae.
- 35. Given the initial value problem defined by $y' = y^2 + xy$, y(0) = 1, find y(0.1), y(0.2) and y(0.3) by Taylor series. Use these values to compute y(0.4) by Milne's formulae.