SOLIT. BRENVER VERY AND STRONG TO SOLIT STRONG

M 7965

Reg. No.:....

Name:.....

III Semester B.Sc. Hon's (Mathematics) Degree (Regular) Examination, November 2014 BHM 303 : DIFFERENTIAL EQUATIONS

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions:

 $(10 \times 1 = 10)$

- 1. Verify whether $y = x^2$ is a solution of the differential equation xy' = 2y.
- 2. Examine whether the equation $2xy dx + x^2 dy = 0$ is exact.
- 3. State the existence theorem for the solution of the initial value problem $y' = f(x, y), y(x_0) = y_0.$
- 4. Solve y'' y = 0.
- 5. Give the formula for the particular solution y_p of the differential equation y'' + p(x)y' + q(x)y = r(x), with arbitrary variable functions that are continuous on some interval I.
- 6. Write down the solution of the exact differential equation P(x, y) dx + Q(x, y) dy = 0.
- 7. Find an integrating factor of the differentiate equation $2 \sin (y^2) dx + xy \cos (y^2) = 0$.
- 8. Write down the solution of the linear differential equation $\frac{dy}{dx} + Py = Q$, where P and Q are functions of x.
- Give the general solution if the characteristic equation of the differential equation y" + ay' + by = 0 has two distinct roots.
- 10. Obtain the auxiliary equation of the Euler-Cauchy equation $x^2y'' + axy' + by = 0$.

 P.T.O.

M 7965

Answer any ten short answer questions out of 14:

 $(10 \times 3 = 30)$

- 11. Solve the differential equation ay y' + 4x = 0.
- 12. Solve: y' y = 4.
- 13. Find the orthogonal trajectories of $y = cx^2$.
- 14. Show that e^x is an integrating factor of the equation $\sin y \, dx + \cos y \, dy = 0$ and solve it.
- 15. Show that any linear combination of two solutions of the homogeneous linear differential equation y'' + p(x)y' + q(x)y = 0 on an open interval I is again a solution.
- 16. Solve the initial value problem y'' + 4y' + 4y = 0, y(0) = 1, y'(0) = 0.
- 17. Find a general solution of the equation $x^2y'' 20y = 0$.
- 18. If p(x) and q(x) are continuous on an open interval I, show that the equation y'' + p(x)y' + q(x)y = 0 has a general solution on I.
- 19. Determine the type and stability of the critical point of the system $y_1^1 = y_1 + 2y_2$, $y_2^1 = 2y_1 + y_2$.
- 20. Explain Picard's method of successive approximation of solution of $y' = f(x, y), y(x_0) = y_0$.
- 21. Obtain the second order Runje-Kutta formula for solving the equation $y' = f(x, y), y(x_0) = y_0.$
- 22. Given the differential equation $\frac{dy}{dx} = 1 + y^2$ with y(0) = 0. Find y(0.2) using Runje-Kutta fourth order formula (h = 0.2).
- 23. State Milne's predictor-corrector formula for the solution of the initial value problem y' = f(x, y), $y(x_0) = y_0$.
- 24. Solve the equation y'' y = 0 by converting it to a system of two first order equations.

-3-

(6×5=30)

M 7965

Answer any six short essay questions out of nine :

25. Solve:
$$2xyy' = y^2 - x^2$$
.

26. Solve:
$$y' + \frac{1}{x}y = 3x^2y^2$$
.

27. Find the approximate solutions $y^{(1)}$ and $y^{(2)}$ to the initial value problem $y^1 = x + y^2$ by Picard's iteration subject to the condition y(0) = 1.

28. Solve:
$$4y'' - 4y' - 3y = 0$$
, $y(-2) = e$, $y'(-2) = -\frac{e}{2}$.

29. Verify $y_p = 2x$ is a solution of the equation y'' + y = 2x and solve the initial value problem y'' + y = 2x, y(0) = -1, y'(0) = 8.

30. Solve:
$$(D^2 + 1) y = e^{-x}$$
, $y(0) = -1$, $y'(0) = -1$.

- 31. Solve the differential equation $y'' + y = \sec x$ if $y_1 = \cos x$ and $y_2 = \sin x$ are a basis of solutions of the homogeneous equation y'' + y = 0.
- 32. Find a general solution of the system of equations $y_1' = -3y_1 + y_2$, $y_2' = y_1 3y_2$.
- 33. If $\frac{dy}{dx} = 1 + xy$, y(0) = 1, obtain the Taylor series for y(x) and compute y(0.1) correct to three decimal places.

Answer any one essay equation out of two:

 $(10 \times 1 = 10)$

34. If y_1 and y_2 are the solutions of the homogeneous linear equation y'' + p(x)y' + q(x)y = 0, show that $y_2 = y_1 \int U dx$, where $U = \frac{1}{v_1^2} e^{-\int P dx}$.

35. Given the differential equation $y' = x^2 + y$ with y(0) = 1, compute y when x = 0.1 and when x = 0.15 correct to three decimal places by using Euler's modified method (h = 0.05).