K16U 1344

28. Find E (Y₁, Y₂) if Y₁ and Y₂ have joint p.d.f. given by

$$f(y_1, y_2) = \begin{cases} 2(1 - y_1), 0 \le y_1 \le 1, & 0 \le y_2 \le 1 \\ 0, elsewhere \end{cases}.$$

29. Find the covariance of Y_1 and Y_2 if Y_1 and Y_2 have the joint p.d.f. given by

$$f(y_1, y_2) = \begin{cases} 4y_1y_2, & 0 \le y_1 \le 1, & 0 \le y_2 \le 1 \\ 0, & \text{elsewhere} \end{cases}.$$

- 30. If Y_1 and Y_2 are independent random variables and $g(Y_1)$ and $h(Y_2)$ are functions of only Y_1 and Y_2 respectively, show that $E[g(y_1) h(y_2)] = E[g(y_1) [E[h(y_2)]]$.
- 31. If Y has the probability density function $f_y(y) = \begin{cases} 2y, 0 \le y \le 1 \\ 0, \text{ elsewhere} \end{cases}$, find the density function of U = -4y + 3.
- 32. If Y_1, Y_2 ,, Y_n is a random sample of size n from a normal population with mean μ and variance σ^2 , show that $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ is normally distributed with mean μ and variance σ^2/n .
- 33. If Z_1, Z_2, \ldots, Z_6 denotes a random sample from the standard normal distribution, find a number b such that $P\left(\sum_{i=1}^6 z_1^2 \le b\right) = 0.95$.

Answer any one essay question out of 2:

 $(1 \times 10 = 10)$

- 34. If Y_1 , Y_2 and Y_3 are random variables where E $(Y_1) = 1$, E $(Y_2) = 2$, E $(Y_3) = -1$, V $(Y_1) = 1$, V $(Y_2) = 3$, V $(Y_3) = 5$, Cov $(Y_1, Y_2) = -0.4$, Cov $(Y_1, Y_3) = 0.5$ and Cov $(Y_2, Y_3) = 2$.
 - Find the expected value and variance of $U = Y_1 2Y_2 + Y_3$. If $W = 3Y_1 + Y_2$, find Cov (U, W).
- 35. State and prove the Central Limit Theorem.

K16U 1344

Reg. No. :

Name :

II Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improve.)

Examination, May 2016

BHM 205 : PROBABILITY THEORY – II

Time: 3 Hours

Max. Marks: 80

Answer all 10 questions:

 $(10 \times 1 = 10)$

- 1. If Y_1 and Y_2 are two random variables, define the joint distribution function $F(y_1, y_2)$.
- If Y₁ and Y₂ are two continuous random variables, give the marginal density functions of Y₁ and Y₂.
- Define the conditional discrete probability distribution of two discrete random variables Y₁ and Y₂.
- 4. Define the covariance of two random variables Y₁ and Y₂.
- 5. If Y_1 and Y_2 are independent random variables, show that $cov(Y_1, Y_2) = 0$.
- If Y₁ and Y₂ are two jointly continuous random variables, define the conditional density of Y₁ given Y₂ = Y₂.
- 7. Find P $(Y_1 \ge 2 | Y_2 = 1)$ from the following table.

- If Y₁ and Y₂ are jointly discrete random variables, define the conditional expectation of g (Y₁) given that Y₂ = y₂.
- 9. Define a 't' distribution with n degrees of freedom.
- 10. Define a χ^2 distribution with n degrees of freedom.

P.T.O.

Answer any 10 short answer questions out of 14:

 $(10 \times 3 = 30)$

11. The joint p.d.f. of Y₁ and Y₂ is given by

$$f(y_1, y_2) = \begin{cases} 30 \ y, y_2^2, y_1 - 1 \le y_2 \le 1 - y_1, \ 0 \le y_1 \le 1, \text{ find} & p(Y_1 > Y_2) \\ 0, \text{ elsewhere} \end{cases}$$

- 12. If $f(y_1, y_2) = \begin{cases} 2, & 0 \le y_2 \le y_1 \le 1 \\ 0, & \text{elsewhere} \end{cases}$ is the joint probability density function of the random variables Y_1 and Y_2 , show that Y_1 and Y_2 are independent.
- Find the expected value of Y₁, if the joint p.d.f. of the random variables Y₁ and Y₂ given by

$$f(y_1, y_2) = \begin{cases} 2y_1, & 0 \le y_1 \le 1, & 0 \le y_2 \le 1 \\ 0, & \text{elsewhere} \end{cases}.$$

14. If Y₁ and Y₂ are independent random variables, show that

$$cov (Y_1, Y_2) = E(Y_1Y_2)E(Y_1) - E(Y_2).$$

- 15. If Y_1, Y_2, \ldots, Y_n are independent random variables with moment generating function $m_{y_i}(t)$, $i=1,2,\ldots,n$, respectively, prove that $m_{y_1+y_2+\ldots +y_n}(t)=m_{y_1}(t)$. $m_{y_2}(t)$ $m_{y_n}(t)$.
- 16. If Y_1, Y_2, \ldots, Y_n are independently distributed random variables with $E(Y_i) = \mu_i$, $V(y_i) = \sigma^2, \ i = 1, 2, \ldots, n \text{ and if } Z_i = \frac{Y_i \mu_i}{\sigma i}, i = 1, 2, \ldots, n, \text{ show that } \sum_{i=1}^n Z_i^2 \text{ has a}$ $\chi^2 \text{ distribution with n degrees of freedom.}$
- 17. Find P (0.1 \leq Y₁ \leq 0.3, 0 \leq Y₂ \leq 0.5) if the joint density function of Y₁ and Y₂ is $f(y_1, y_2) = \begin{cases} 1, & 0 \leq y_1 \leq 1, & 0 \leq y_2 \leq 1 \\ 0, & \text{elsewhere} \end{cases}.$
- Contracts for two construction jobs are randomly assigned to one or more of three firms, A, B and C. If Y₁ is the number of contracts assigned to firm A and Y₂ is the number of contracts assigned to firm B, find F (1, 0).

K16U 1344

-3-

- Let Y₁, Y₂,, Y_n be independent and identically distributed random variables such that for 0 i</sub> = 1) p and P (Y_i = 0) = q = 1 - p. Find the moment generating function for Y₁.
- 20. If Y_1, Y_2, \ldots, Y_n are independent, normal random variables each with mean μ and variance σ^2 . Find $P\left(\left| \stackrel{\frown}{Y} \mu \right| \le 1\right)$ if $\sigma^2 = 16$ and n = 25.
- 21. If the joint p.d.f. of Y_1 and Y_2 is given by $f(y_1, y_2) = \begin{cases} 3y_1, & 0 \le y_2 \le y_1 \le 1 \\ 0, & \text{elsewhere} \end{cases}$, find the marginal density function for Y_2 .
- 22. If the joint p.d.f. of Y_1 and Y_2 is given by $f(y_1, y_2) = \begin{cases} e^-(y_1 + y_2), y_1 > 0, y_2 > 0 \\ 0, \text{ elsewhere} \end{cases}$, examine whether Y_1 and Y_2 are dependent.
- 23. If f (y₁, y₂) = $\begin{cases} 6 \ (1-y_2), \ 0 \le y_1 \le y_2 \le 1 \\ 0, \text{ elsewhere} \end{cases}$ in the joint p.d.f. of Y₁ and Y₂, find V (Y₁) and V (y₂).
- 24. If Y has the p.d.f. given by $f_y(y) = \begin{cases} \frac{y+1}{2}, -1 \le y \le 1 \\ 0, \text{ elsewhere} \end{cases}$, find the density function of $U = Y^2$.

Answer any 6 short essay questions out of 9:

 $(6 \times 5 = 30)$

- 25. If $f(y_1, y_2) = \begin{cases} e^{-y_1}, 0 \le y_1 \le y_2 < \infty \\ 0, \text{ elsewhere} \end{cases}$ is the joint p.d.f. of the random variables Y_1 and Y_2 ,
 - a) Find the marginal density functions of Y₁ and Y₂.
 - b) Find the conditional density function of Y_1 given $Y_2 = y_2$.
- 26. If the joint p.d.f. of Y_1 and Y_2 is given by $f(y_1, y_2) = \begin{cases} y_2, & 0 \le y_1 \le y_2 \le 2 \\ 0, & \text{elsewhere} \end{cases}$, find $P(Y_1 \le 1 | Y_2 = 1.5)$.
- 27. If $f(y_1, y_2) = \begin{cases} 6y_1y_2^2, 0 \le y_1 \le 1, & 0 \le y_2 \le 1 \\ 0, \text{ elsewhere} \end{cases}$, show that Y_1 and Y_2 are independent.