

K20U 0234

Name :
II Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.) Examination, April 2020 (2016 Admission Onwards) BHM 203: INTEGRAL CALCULUS
Time: 3 Hours Max. Marks: 60
binimes with all besource SECTION - A can only by said a still bold at
Answer any 4 questions out of 5 questions. Each question carries 1 mark.
 Give a sequence which is neither increasing nor decreasing.
2. State the nth term test for divergence.
3. Evaluate lim √n². Bros at mus deathy tanger emain, as post ,£1
4. Express the sum 1 + 2 + 3 + 4 + 5 + 6 in sigma notation.
5. Find the work done by a force $F(x) = 1/x^2 N$ along the x-axis from $x = 1 m$ to $x = 10 m$. (4x1=4)
SECTION - B TO THE SECTION - B
Answer any 6 questions out of 9 questions. Each question carries 2 marks.
6. Find a geometric series $\sum ar^{n-1}$ that converges to the number 5 if $a=2$.
7. For what values of x does the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converge?
8. Find the Taylor series generated by $f(x) = x^3 - 2x + 4$ at $x = 2$.
9. Use reduction formula to evaluate ∫cos⁴ xdx. P.T.O.

- 10. Use reduction formula to evaluate \int tan x dx.
- 11. Evaluate $\sum_{k=1}^{4} (k^2 3k)^{2} = 100$ A notion max 3
- 12. Show that the value of $\int_0^1 \sqrt{1 + \cos x} \, dx$ cannot possibly be 2.
- 13. Find the centre of mass of a thin plate of constant density δ covering the region bounded by the parabola $y = x^2$ and the line y = 4.
- 14. Find the area of the region in the plane enclosed by the cardioid $r = 2(1 + \cos\theta)$. (6×2=12)

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

- 15. Find an infinite series whose sum is 2019.
- 16. Find series for f'(x) and f''(x) if $f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, -1 < x < 1.
- 17. Find the interval of convergence for the series $\sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{4^n}$.
 - Find the linearization and quadratic approximation of f(x) = ln(cos x) at x = 0.
 - 19. If $I_n = \int_0^1 (a^2 x^2)^n dx$, then show that $I_n = \frac{2na^2}{2n+1}I_{n-1}$.
 - 20. Use reduction formula to evaluate $\int \sin^3 x \cos^3 x dx$. $\int_0^{\pi/6} (1-\cos 3t) \sin 3t dt$.
 - 21. Find the average value of $f(x) = 4 x^2$ on [0, 3]. Does f actually take on this value at some point in the given domain?
- 22. Find dy/dx if $y = \int_{1}^{x^2} \cos t dt$.

-3-

K20U 0234

 $(8 \times 4 = 32)$

- 23. A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at a 45° angle at the centre of the cylinder. Find the volume of the wedge.
- 24. Find the area of the surface generated by revolving the curve $y = x^2$, $0 \le x \le 2$ about the x-axis.
- 25. Show that the centre of mass of a straight, thin strip of constant density lies halfway between its two ends.
- 26. Find the length of the cardioid $r = 1 \cos\theta$.

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

- 27. Show that the Maclaurin series for cos x converges to cos x for all x.
- Evaluate the definite integral ∫₀^{5/2} sin^p x cos^q x dx where p, q are positive integers.
- 29. Find the area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by the x-axis and the line y = x 2.
- 30. Find the length of the curve $y = (x/2)^{2/3}$ from x = 0 to x = 2. (2x6=12)