K18U 0302

Answer any one essay question out of 2:

 $(1 \times 10 = 10)$

- 34. a) Show that the center of mass of a straight, thin strip or rod of constant density lies halfway between its two ends.
 - b) The 10 m long rod thickness from left to right so that its density, instead of being constant, is $\delta(x) = 1 + \left(\frac{x}{10}\right)$ kg/m. Find the rod's center of mass.
- 35. a) Find the Taylor series and Taylor polynomial generated by $f(x) = \cos x$ at x = 0.
 - b) Find the radius and interval of convergence of the series $\sum_{n=0}^{\infty} n! \, x^n$. Also find for what value of x does the series converge, absolutely converge and conditionally converge?

K18U 0302

Reg. No. :

Name:

II Semester B.Sc. Hon's (Mathematics) Degree (Supple./Improv.) Examination, May 2018 BHM 203: INTEGRAL CALCULUS (2013-15 Admns.)

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions.

 $(10 \times 1 = 10)$

P.T.O.

- 1. Find the derivative of y w.r.t. x where $y = \ln (x^2 + 3)$.
- 2. Show that for every real number x, $e^x = In^{-1} x$.
- 3. Give an example of a sequence having no upper bound.
- By defining the recursion formula, find the Fibonacci numbers.
- 5. Establish the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n 5}{4^n}$.
- 6. Evaluate $\sum_{k=1}^{4} (k^2 3k)$.
- 7. Give an example of a function with no Riemann integral.
- 8. Find the norm of the partition $p = \{0, 0.2, 0.6, 1, 1.5, 2\}$ of [0, 2].
- 9. Applying the fundamental theorem of calculus, find $\frac{d}{dx} \int_{-\pi}^{x} \cos t \ dt$.
- 10. Evaluate $\int_{-\pi/2}^{\pi/2} \frac{4 \cos \theta \ d\theta}{3 + 2 \sin \theta}.$

Answer any 10 short answer questions out of 14.

 $(10 \times 3 = 30)$

11. Find
$$\frac{dy}{dx}$$
 if $y = \frac{(x^2 + 1)(x + 3)^{\frac{1}{2}}}{x - 1}$, $x > 1$.

- 12. Find K if $e^{2K} = 10$.
- 13. Solve the initial value problem, $e^y \frac{dy}{dx} = 2x$, $x > \sqrt{3}$, y(2) = 0.
- 14. Evaluate $\int \frac{\log_2 x \, dx}{x}$.
- 15. Find $\lim_{x\to 0} \frac{\sqrt{1+x}-1-(x/2)}{x^2}$.
- 16. Show that $\sqrt{x^2+5}$ and $(2\sqrt{x}-1)^2$ grow at the same rate at $x\to\infty$.
- 17. Find the sum $\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$.
- 18. Find the length of the curve $y = \left(\frac{x}{2}\right)^{2/3}$ from x = 0 to x = 2.
- 19. Find the Maclaurin series for the function $f(x) = \sin x$.
- 20. Does the sequence whose n^{th} term given by $a_n = \left(\frac{n+1}{n-1}\right)^n$ converge ? If so, find $\lim_{n\to\infty} a_n$.
- 21. Evaluate $\int_{0}^{1} \frac{2dx}{\sqrt{3+4x^2}}$.

-3-

- 22. For what values of x the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}$ converges.
- 23. Find the workdone by a force of $f(x) = \frac{1}{x^2}N$ along the x-axis from x = 1 m to x = 10 m.
- 24. Find the area of the region in the plane enclosed by the cardioid $r = 2(1+\cos\theta)$.

 Answer any 6 short essay questions out of 9. (6×5=30)

K18U 0302

- 25. Find the Taylor series generated by $f(x) = \frac{1}{x}$ at a = 2. Where does the series converges to $\frac{1}{x}$?
- 26. Find $\frac{dy}{dx}$ if $y = \int_{1}^{x^2} \cos t \ dt$, using Fundamental Theorem.
- 27. Find the length of the cardioid $r = 1 \cos \theta$.
- 28. Find the area of the region in the first quadrant that is bounded by $y = \sqrt{x}$ and below by the x-axis and the line y = x 2.
- 29. Find the area of the region between the curve $y = 4 x^2$, $0 \le x \le 3$ and the x-axis.
- 30. Show that if f is continuous on [a, b], $a \neq b$ and if $\int_a^b f(x) = 0$, then f(x) = 0 at least once in [a, b].
- 31. Find the volume of the solid generated by revolving the region bounded by $y = x^2$ and the lines y = 0, x = 2 about the x-axis.
- 32. Find the area of the surface generated by revolving the curve $y=2\sqrt{x}$, $1 \le x \le 2$, about the x-axis.
- 33. Evaluate: $\int_0^{\ln 2} 4e^x \sinh x \, dx$