K19U 0787

- 32. Find the area of the surface generated by revolving about the x-axis, the arc of the parabola $y^2 = 4ax$ from the origin to the point where x = a, a > 0.
- 33. The ends of two thin steel rods of equal length are welded together to make a right angled frame. Locate the centre of mass of the frame.

Answer any one essay question of 2:

 $(1 \times 10 = 10)$

- 34. State and prove the convergence theorem for power series.
- 35. a) How much work does it take to pump the water from a full upright circular cylindrical tank of radius 5 m and height 10 m to level of 4 m above the top of the tank?
 - b) Show that the center of mass of a straight thin strip or rod of constant density lies half-way between the two ends.

K19U 0787

Reg. No.		

Name :

II Semester B.Sc. Hon's (Mathematics) Degree (Supplementary) Examination, April 2019 (2013-'15 Admissions) BHM 203: INTEGRAL CALCULUS

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions:

 $(10 \times 1 = 10)$

- 1. Find the derivative of y with respect to x, where $y = e^{(2x + 5)}$.
- 2. Evaluate $\int_{0}^{2} \frac{2x}{x^{2}-1} dx$.
- 3. Find the derivative of $y = 3^{\sin x}$ with respect to x.
- 4. Define the recursion formula for Fibonacci numbers.
- 5. Establish the convergence of the series $\sum_{n=1}^{\infty} 5 \left(\frac{-1}{4}\right)^n$.
- 6. Evaluate $\lim_{x\to\infty} \frac{x-2}{x^2-4}$.
- 7. Describe the monotonicity of Riemann integrals.
- 8. Applying the fundamental theorem of calculus. Find $\frac{d}{dx} \int_{-\pi}^{\pi} \cos t dt$.
- 9. Write the expression for the work done W by a force F.
- 10. What is the formula for the area of the surface generated by revolving a curve y = f(x), which is smooth on [a, b], around x-axis?

P.T.O.

K19U 0787

Answer any 10 short answer questions out of 14:

 $(10 \times 3 = 30)$

11. Find
$$\frac{dy}{dx}$$
 if $y = \frac{(x^2 + 1)(x + 1)}{x - 1}$.

- 12. Find the value of k if $e^{2k} = 10$.
- 13. Evaluate $\int \frac{\log_2 x}{x} dx$.
- 14. Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.
- 15. Show that the $\left\{ \left(-1\right)^{n+1} \frac{\left(n-1\right)}{n} \right\}$ diverges.
- 16. For what values of x, does the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converge ?
- 17. Find the Taylor series generated by the function $f(x) = \frac{1}{x}$ at x = 2.
- 18. Does the sequence whose nth term given by $a_n = \left(\frac{n+1}{n-1}\right)^n$ converge ? If so find $\lim_{n\to\infty} a_n$.
- 19. Find the average value of $f(x) = 4 x^2$ on [0, 3]. Explain whether f actually takes on this value at some point in the given domain.
- 20. Evaluate $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cot \theta \cos^2 \theta d\theta$.
- Describe the fundamental theorem on calculus and the mean value theorem for definite integrals.

K19U 0787

- 22. Find the area of the region in the plane enclosed by the cardioid $r = 2(1 + \cos \theta)$.
- 23. Evaluate $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}.$
- 24. Find the length of the curve $y = \log \sec x$ between the points given by x = 0 and $x = \frac{\pi}{3}$.

Answer any 6 short answer questions out of 9:

 $(6 \times 5 = 30)$

- 25. People who do carbon-14 dating use a figure of 5700 years for its half life. Find the age of a sample in which 10% of the radioactive nuclei originally present have decayed.
- 26. Determine $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{x} \right)$.
- 27. Find the Taylor series and the Taylor polynomial generated by the function $f(x) = e^x$ at x = 0.
- 28. Obtain the power series for $\frac{1}{(1-x)^2}$ by multiplying the geometric series $\sum_{n=0}^{\infty} x^n$, |x| < 1.
- 29. If f is continuous on [a, b], $a \neq b$ and if $\int_{a}^{b} f(x) = 0$, then show that f(x) = 0 at least once in [a, b].
- 30. Find the area enclosed by the curves $x = y^2$ and x = y + 2.
- 31. A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at an angle of 45° angle at the center of the cylinder. Find the volume of the wedge.