|  |   | 8 |   |  |
|--|---|---|---|--|
|  |   |   |   |  |
|  |   |   |   |  |
|  |   |   |   |  |
|  |   |   | 8 |  |
|  | 8 |   |   |  |
|  |   |   | 5 |  |



K18U 0305

Reg. No. : .....

Name : .....

II Semester B.Sc. Hon's (Mathematics) Degree (Regular/Supple./Improv.)

Examination, May 2018

(2016 Admn. Onwards)

**BHM 202: ABSTRACT ALGEBRA AND LINEAR ALGEBRA** 

Time: 3 Hours

Max. Marks: 60

## SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- State True/False: The set of all non-zero rational numbers is closed under the operation division.
- 2. What is the cyclic subgroup of  $\langle \mathbb{Z}, + \rangle$  generated by 2.
- 3. What is the dimension of C over the field R?
- 4. What do you mean by an ordered basis for a finite dimensional vector space ?
- 5. Is the function T:  $\mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T(x_1, x_2) = (1 + x_1, x_2)$  linear? (4×1=4)

## SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

- 6. Define an abelian group. Give an example for a group which is not abelian.
- 7. Prove that in a group,  $(a * b)^{-1} = b^{-1} * a^{-1}$ .
- Give examples of two groups of order 4, one of which is cyclic and the other is non-cyclic.

P.T.O.





- 9. If  $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$  and  $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$  are two permutations on  $S_6$ , find  $t\sigma$ .
- 10. Define the terms orbits, cycles and transpositions in a permutation.
- 11. Define subspace of a vector space. Give an example for the subspace of  $\mathbb{R}^2$ .
- 12. Define basis and dimension of a vector space.
- 13. What do you mean by rank and nullity of a linear transformation ?
- 14. Define an invertible function between two vector spaces. Is the function T:  $\mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T(x_1, x_2) = (x_1 + x_2, x_1)$  invertible?  $(6 \times 2 = 12)$

## SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks :

- 15. Let S be the set of all real numbers except 1. Define  $\star$  on S by a  $\star$  b = a +b + ab. Prove that S is an abelian group with respect to \*.
- 16. Prove that intersection of two subgroups is again a subgroup. By an example, show that union of two subgroups need not be a subgroup.
- 17. Find all subgroups of Z<sub>18</sub> and draw their subgroup diagram.
- 18. Describe the elements of S<sub>3</sub>, the group of symmetries of an equilateral triangle.
- 19. Express the permutation  $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$  in S<sub>8</sub> as a product of disjoint cycles and then as a product of transpositions.
- 20. Prove that every permutation of a finite set can be expressed as a product of disjoint cycles.
- 21. Prove that a non-empty subset W of V is a subspace of V if and only if for each pair of vectors  $\alpha$ ,  $\beta$  in W and each scalar c in F, the vector  $c\alpha + \beta$  is again in W.
- 22. Let W be a subspace of a finite dimensional vector space V. Prove that every linearly independent subset of W is finite and is part of a basis of W.



K18U 0305

- 23. Are the vectors  $\{(1, 1, 2, 4), (2, -1, -5, 2), (1, -1, -4, 0), (2, 1, 1, 6)\}$  linearly independent in R4 ?
- 24. Find the rank and nullity of the linear transformation  $T: \mathbb{R}^2 \to \mathbb{R}^3$  defined by  $T(x_1, x_2) = (2x_1 + x_2, x_2 - x_1, 3x_1 + 4x_2).$
- 25. Prove that every n-dimensional vector space over the field F is isomorphic to the space Fn.
- 26. Let T be a linear operator on  $\mathbb{R}^2$  defined by  $T(x_1, x_2) = (-x_2, x_1)$ . What is the matrix of T in the ordered basis  $\{(1, 2), (1, -1)\}$ ?  $(8 \times 4 = 32)$

## SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

- 27. a) Prove that identity element in a group is unique.
  - b) Show that a nonempty subset H of a group G is a subgroup of G if and only if  $ab^{-1} \in H$  for all  $a, b, \in H$ .
- 28. State and prove Cayley's theorem.
- 29. If W<sub>1</sub> and W<sub>2</sub> are finite dimensional subspaces of a vector space V, then prove that  $W_1 + W_2$  is finite dimensional and dim  $W_1 + \dim W_2 = \dim$  $(W_1 \cap W_2) + \dim(W_1 + W_2)$ .
- 30. Let V be an n-dimensional vector space over the field F and let W be an m-dimensional vector space over F. Prove that the space of all linear transformations from V to W, L(V, W) is finite dimensional and has dimension mn.

 $(2 \times 6 = 12)$