THEFT	1000 000	100 100	100 600	111 1111
			ALL EVER	

13	SE F	1
1/27	3	12/
(Iz	The same	184
1	节	压
1/38	91109	1

K16U 1341

Reg. No.:....

Name:.....

II Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improve.)

Examination, May 2016

BHM 202 : ABSTRACT ALGEBRA - I

Time: 3 Hours

Max. Marks: 80

Answer all the 10 questions.

 $(10 \times 1 = 10)$

- Examine whether the usual addition + on the set of all real numbers induce a binary operation on the set of all non-zero reals.
- 2. If an operation \star on the set of all rationals Q is defined by $a\star b = \frac{a}{b}$, check whether \star is a binary operation on Q.
- Is the Klein 4 group V = {e, a, b, c} cyclic ? Obtain the proper cyclic subgroups of V, if any.
- 5. If (Q, +) is the additive group of rational, examine whether \mathbb{Z} is a subgroup Q^+ .

6. If
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 6 & 5 & 4 & 1 \end{pmatrix}$$
 and
$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 5 & 6 & 2 & 4 \end{pmatrix}$$
, find $\alpha\beta$ and $(\alpha\beta)^+$.

- Examine whether the product of the cycles (1, 4, 5, 6) and (2, 1, 5) in S₆ is again a cycle.
- 8. Show that $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}$ in S_6 is an odd permutation.

K16U 1341

Show that the map φ: Z→2 Z defined by φ (x) = 2x for x∈ Z is not a ring homomorphism.

If p is a prime, show that Z_phas no zero divisors.

Answer any 10 short answer questions out of 14.

(10×3=30)

- 11. Show that the binary structures (\mathbb{R} , +) and (\mathbb{R} , .) are isomorphic, where + is the usual addition, '.' is the multiplication on \mathbb{R} , the set of all reals.
- 12. Show that the set of all invertible n × n matrices with real entries is a group with respect to matrix multiplication.
- 13. If (G, *) is a group, show that the linear equations a * x = b and y * a = b have unique solutions in G.
- 14. If $(a * b)^2 = a^2 * b^2$ for 'a' and 'b' in a group G, show that a * b = b * a, where $a^2 = a * a$.
- 15. Show that every cyclic group is abelian.
- 16. State and prove the division algorithm for Z.
- 17. Prove that a non-empty subset H of a group G is a subgroup of G if and only if a, b ∈ H implies ab⁺ ∈ H.
- Find all subgroups of Z₁₈.
- Prove that any permutation of a finite set of at least two elements is a product of transpositions.
- Show that the number of even permutations in S_n is the same as the number of odd permutations.
- 21. Prove that every group of prime order is cyclic.
- 22. Prove that a homomorphism φ from a group G to another Group G' is one-to-one if and only if Ker φ = {e}.
- 23. Prove that every field F is an integral domain.
- 24. In the ring \mathbb{Z}_n , prove that the divisors of zero are precisely those non-zero elements that are relatively prime ton.

K16U 1341

Answer any 6 short essay questions out of 9.

 $(6 \times 5 = 30)$

- 25. Show that the binary structures (\mathbb{Z} , +) and (2 \mathbb{Z} , +) are isomorphic, where 2 \mathbb{Z} = {2n : n ∈ \mathbb{Z} }.
- 26. If G is a group with binary operation *, prove that the left and right cancellation laws hold in G.
- 27. If (G, *) is a group, show that the identity element and inverse of each element are unique in G.
- 28. If G is a group and $a \in G$, show that $H = \{a^n : n \in \mathbb{Z}\}$ is a subgroup of G.
- 29. Show that every group is isomorphic to a group of permutations.
- 30. If G and G¹ are groups and $\phi: G \to G¹$ is a one-to-one function such that $\phi(xy) = \phi(x) \phi(y)$ for all $x, y \in G$, show that $\phi(G)$ is a subgroup of G. Show also that ϕ provides as isomorphism of G with $\phi(G)$.
- 31. If φ : G → G¹ is a homomorphism of a group G into a group G¹, prove the following.
 - i) If e is the identity element of G, then ϕ (e) is the identity element of G¹
 - ii) ϕ (a⁻¹) = ϕ (a)⁻¹, where a \in G.
 - iii) If H is a subgroup of G, then ϕ [H] is a subgroups of G1.
- 32. Prove that every finite integral domain is a field.
- 33. Let R be aring with unity. If $n.1 \neq 0$ for all $n \in \mathbb{Z}^+$, show that R has characteristic zero. If n.1 = 0 for some $n \in \mathbb{Z}^+$, then show that the smallest such integer is the characteristic of R.

Answer any one essay question out of 2.

 $(1 \times 10 = 10)$

- 34. If G is a cyclic group with generator 'a' and if order of G is finite, show that G is isomorphic to (Z, +). If G has finite order n, then show that G is isomorphic to Z_n, under addition modulo n.
- 35. Prove that every group is isomorphic to a group of permutations.