	7367	0

K19U 0786

Reg. I	No.	 00
		lin

Il Semester B.Sc. Hon's (Mathematics) Degree (Supplementary) Examination, April 2019

(2013-2015 Admissions) BHM 202: ABSTRACT ALGEBRA - I

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions.

 $(10 \times 1 = 10)$

- 1. Define binary operation on a set.
- 2. Is usual substraction associative on the set of integers? Justify.
- 3. Is empty set a group ? Justify.
- 4. Find the number of generators of Z_7 .
- 5. Correct the statement and justify: Klein-4 group is cyclic.
- 6. Find the number of subgroups of Z_8 .
- 7. Find the order of the symmetric group S_{10} .
- 8. State Lagrange theorem.
- 9. Define Kernal of a group homomorphism.
- 10. Give two examples of Integral Domains.

Answer any 10 short answer questions out of 14.

 $(10 \times 3 = 30)$

- 11. Show that every group G with identity e and such that $x * x = e \ \forall \ x \in G$ is abelian.
- 12. Prove that for a group G. $(a*b)' = b'*a', \forall a, b \in G$.

P.T.O.

-2-

- 13. State true of false with justification: Every finite group of atmost three elements is abelian.
- 14. Prove that every cyclic group is abelian.
- 15. Show that if $H \leq G$ and $K \leq G$ then $H \cap K \leq G$.
- 16. Is \mathbb{R}^+ under operation $a \star b = a b$ a group?
- 17. Define cyclic groups and give two examples.
- 18. Let $\phi: G \to G'$ be a group homomorphism. Prove that if H is a subgroup G. $\phi[H]$ is a subgroup of G'.
- 19. Determine whether the given map is a homomorphism $\phi: Z_9 \to Z_2$ given by $\phi(x) =$ remainder of x when divided by 2.
- 20. Prove that every group of prime order is cyclic.
- 21. Find the number of cosets of {0, 5} in Z₂₅.
- 22. Find all solution of the equation $x^2 + 2x + 2 = 0$ in Z_6 .
- 23. Find all zero divisors of Z₅. Explain the answer.
- 24. Show that the intersection of subrings of a ring R is again a subring of R.

Answer any 6 short answer questions out of 9.

(6×5=30)

- 25. Prove that left and right cancellation law hold in a group.
- 26. Let n be a positive integer. Let $nZ = \{nm : m \in Z\}$.
 - a) Show that $\langle nZ. + \rangle$ is a group.
 - b) Show that $\left\langle nZ.+\right\rangle \cong \left\langle Z.+\right\rangle .$

K19U 0786

27. Compute the product involving the following permutations in S₆.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$$
i) $\sigma^{-1}\tau\sigma$ ii) $\tau^2\sigma$.

- 28. Let G be a group and let $a \in G$. Show that $Ha = \{x \in G : xa = ax\}$ is a subgroup of G.
- 29. Find all subgroups of S, and draw its subgraph diagram.
- 30. Show that if a group G with identity e has finite order n. then $a^n = e$, $\forall a \in G$.
- 31. Compute Ker ϕ and $\phi(25)$ for $\phi: Z \to Z$ such that $\phi(1) = 4$.
- 32. Find the partition of Z_{ϵ} into cosets of the subgroup H = {0.3}.
- 33. Prove that Z_2 is an Integral domain. But the matrix ring $M_2(Z_2)$ has divisors of zero.

Answer any one essay question out of 2.

 $(1 \times 10 = 10)$

- 34. a) State and prove Cayley's theorem.
 - b) Find the number of elements in the set $\{\sigma \in S_5 : \sigma(2) = 5\}$.
- 35. State and prove Lagrange's theorem.