

K19U 3009

Reg. No.:....

I Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)

Examination, November - 2019

(2016 Admission Onwards)

BHM 105: TWO DIMENSIONAL GEOMETRY

Time: 3 Hours Max. Marks: 60

SECTION-A

Any 4 out of 5 questions. Each question carries 1 mark.

- Define translation of axes.
- 2. Write the general form of a homogeneous second degree equation.
- 3. Write the parametric equation of the parabola.
- 4. Define conjugate hyperbola.
- 5. Define centre of a conic section.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

- 6. Find the equation of the curve $2x^2 3y^2 + 4x 2y + 8 = 0$ referred to a new origin at the point (1,2) the old and new axes being parallel.
- 7. Let the pair of the lines $x^2 2pxy y^2 = 0$ and $x^2 2qxy y^2 = 0$ be such that each pair bisects the angles between the other pair. Prove that pq = -1.
- P (x, y) is equidistant from the point A (2, 0) and y-axis. Find the equation of the locus of P.
- 9. The normal at a point t_1 on the parabola $y^2 = 4ax$ meets it again at the

point
$$t_2$$
. Prove that $t_2 = -t_1 - \frac{2}{t_1}$

- 10. Find the locus of the middle points of chords of the parabola $y^2 = 4ax$ which passes through the fixed point (h,k).
- 11. Find the condition for lx + my + n = 0 to be a tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

- 12. Prove that the locus of the poles of normal chords of the rectangular hyperbola $xy = c^2$ is the curve $(x^2 y^2)^2 + 4c^2xy = 0$.
- 13. Find the equation of the chord joining two points on a conic.
- 14. Find the asymptotes of the equation $8x^2 + 10xy 3y^2 2x + 4y = 2P.T.O.$

K19U 3009

SECTION-C

Answer any 8 questions out of 12 questions. Each questions carries 4 marks.

- **15.** Plot the locus of the equation $x^2 + y^2 4x 5 = 0$.
- **16.** Find the coordinates of the points which divide the line joining the points (−1, −5) and (1,−2) internally and externally in the ratio 4 : 3.
- 17. What does the equation $x^2 xy + y^2 6 = 0$ become when the axes are turned through an angle of 45°
- **18.** Find the pole of the line 1x + my + n = 0 with respect to the parabola $y^2 = 4ax$.
- 19. Prove that the semi latus rectum is a harmonic mean between the segments of any focal chord of a parabola.
- 20. Prove that the tangents at the extremities of a focal chord of a parabola intersect at right angles on the directrix.
- **21.** Prove that four normals can be drawn to the hyperbola $xy = c^2$ from any given point.
- 22. A line through the origin meets the circle $x^2 + y^2 = a^2$ at P and the hyperbola $x^2 y^2 = a^2$ at Q. Prove that the locus of the point of intersection of the tangent at P to the circle with the tangent at Q to the hyperbola is the curve $(a^4 + 4y^4)^2 = a^6$.
- 23. Find the equation of the chord joining two points whose eccentric angles are given.
- **24.** What conics do the following equation represent and find its centre $12x^2 23xy + 10y^2 25x + 26y = 14$.
- 25. Find the polar equation of a conic, the focus being at the pole.
- 26. Prove that the semi latus rectum of any conic is a harmonic mean between the segments of any focal chord.

SECTION D

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

- 27. Prove that the general homogeneous equation of second degree represents a pair of lines passing through the origin.
- **28.** Prove that the locus of the points such that two of the three normals to the parabola $y^2 = 4ax$ from them coincide is $27ay^2 = 4(x 2a)^2$.
- 29. Find the locus of the point of intersection of tangents to an ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 which meet at right angles.

30. Trace the conic $x^2 - 4xy - 2y^2 + 10x + 4y = 0$.