E-818111, 9/81-11911	1000 0100	1000 8111	

K17U 2677

Reg. No.:

Name :

I Semester B.Sc. Hon's (Mathematics) Degree (Regular/Supple./Improv.)

Examination, November 2017

BHM 102 : FOUNDATIONS OF MATHEMATICS

(2016 Admission)

Time: 3 Hours

Max. Marks: 60

SECTION - A

(Answer any 4 questions out of 5 questions. Each question carries 1 mark.) (4×1=4)

- 1. Define a bijective function.
- 2. Define De-Morgan's laws.
- 3. Define a countably infinite set.
- 4. State well ordering theorem for a set.
- 5. What is the locus of the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

SECTION-B

(Answer any 6 questions out of 9 questions. Each question carries 2 marks.) (6x2=12)

- 6. Define the restriction of a function f and give an example.
- 7. Define the least upper bound and greatest lower bound of a set.
- 8. Distinguish between the conjunction and disjunction of a statement P.
- 9. How many normals can be drawn to a paraboloid from a given point.
- 10. Define the angle of intersection of two spheres.
- 11. True or false: Cone is a central conicoid.

P.T.O.

K17U 2677

- 13. Define contrapositive of a statement. Give an example.
- 14. Define an equivalence relation.

SECTION - C

-2-

(Answer any 8 questions out of 12 questions. Each question carries 4 marks.) (8×4=32)

- 15. Given $f: R \to R$ by $f(x) = 10x^2 + 6$ and $g: R \to R$ by g(x) = 9x + 5. Find $f \circ g$ and $g \circ f$.
- 16. Find the least upper bound of the following sets.
 - 1) $\{-1/2n : n \in N\}$
 - 2) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
- 17. Show that countable union of countable sets is countable.
- 18. Show that the square of an odd integer is an odd integer.
- 19. If m, n are natural numbers such that $m+n\geq 20$, then show that either $m\geq 10$ or $n\geq 10$.
- 20. Show that two equivalent classes E and E' are either disjoint or equal.
- 21. Find the centre and radius of the sphere $x^2 + y^2 + z^2 + 2x 4y 6z + 5 = 0$.
- 22. Find equation of the right circular cylinder with radius 2 and axis is given by $\frac{x-1}{2} = \frac{y}{3} = \frac{z-3}{1}.$
- 23. Show that the plane lx + my + nz = p will touch the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0 \text{ if } (ul + vm + wn + p)^2 = (l^2 + m^2 + n^2) (u^2 + v^2 + w^2 d).$

-3-

K17U 2677

24. Find the equation of the sphere passing through the circle. $x^2 + y^2 + z^2 - 2x + 3y - 4z + 6 = 0, 3x - 4y + 5z - 15 = 0 \text{ and cuts the sphere } x^2 + y^2 + z^2 + 2x + 4y - 6z + 11 = 0 \text{ orthogonally.}$

- 25. Show that the semi vertical angle of a right circular cone having sets of three mutually perpendicular generators is $\tan^{-1}(\sqrt{2})$.
- Show that the sum of squares of three conjugate semi diameters of an ellipsoid is constant.

SECTION - D

(Answer any 2 questions out of 4 questions. Each carries 6 marks.)

 $(2 \times 6 = 12)$

- 27. Define section of a well ordered set X by a. If A is a countable subset of S_{Ω} then show that A has an upper bound in S_{Ω} .
- 28. Find the equation of a sphere passing through four points (0, 0, 0), (-a, b, c), (a, -b, c) and (a, b, -c).
- 29. Find the two tangent planes to the sphere $x^2 + y^2 + z^2 4x + 2y 6z + 5 = 0$, which are parallel to the plane 2x + 2y = z.
- 30. What are the equations relating spherical coordinates of a point to Cartesian and cylindrical coordinates. Also find a spherical coordinate equation for the cone $z = \sqrt{x^2 + y^2}$.