DESIGNATION OF THE PERSON OF T	D IIII	DIE II	RII	HH	BIII	IIII	III	1881
			Ш	Ш	Ш	Ш	Ш	11

K16U 2596

Reg. No. :

Name :

I Semester B.Sc. (Hon's) (Mathematics) Degree (Reg./Supple./Improve.)

Examination, November 2016

BHM - 102: FOUNDATIONS OF MATHEMATICS

Time: 3 Hours

Max. Marks: 80

Answer all the ten questions:

 $(10 \times 1 = 10)$

- 1. If $A \setminus B = \phi$ then $A \cup B = ?$
- Let V = {1, 2, 3, 4}. Is f₁ = {(2, 3), (1, 4), (2, 1), (3, 2), (4, 4)} a function from V into V.
- 3. Let $W = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 3), (2, 2), (3, 1), (4, 4)\}$. Is R reflexive?
- 4. Give an example of a partial ordering relation on the set of positive integers.
- 5. When does a constant function become One-to-One?
- 6. If $B_i = [i, i + 1], i \in Z$, the set of integers, find \cup ($B_i : i \in Z$).
- 7. Find x and y given (2x, x + y) = (6, 2).
- 8. Define the term "Proposition".
- 9. If Q(x, y) denote the statement x = y + 3 what is the truth value of Q(1, 2)?
- 10. When do you say that two sets A and B are equipotent?

Answer any 10 short answer questions out of 14:

 $(10 \times 3 = 30)$

- 11. Suppose $A = \{a, b\}$ and $B = \{1, 2, 3\}$. Find the number of functions from A into B.
- 12. Let f: $R \to R$ be defined by $f(x) = x^2 + 2x$. Find f o f (x).

P.T.O.

K16U 2596

- 13. Consider the function $f: R \to R$ defined by $f(x) = x^2$. Find $f^{-1}(\{x: x \le 0\})$.
- 14. Give an example of a function from N to N that is:
 - i) One-to-One but not Onto
 - ii) Onto but not One-to-One.
- 15. Let f be a function from set A to set B and let S and T be sub-sets of A. Show that $f(S \cup T) = f(S) \cup f(T)$.
- 16. If f and f o g are One-to-One does it follow that g is One-to-One ? Justify your answer.
- 17. Suppose A is a non-empty set and f is a function that has A as its domain. Let R be the relation on A consisting of all ordered pairs (x, y) where f(x) = f(y). Show that R is an equivalence relation.
- 18. Show that the propositions $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.
- 19. What is the truth value of ∃xP(x) where P(x) is the statement "x² > 10" and the universe of discourse consists of positive integers not exceeding 4?
- 20. Explain "Valid Argument". Give an example.
- 21. Prove that $(A \times B) \cap (A \times C) = A \times (B \cap C)$.
- 22. Form a rational cubic equation whose two roots are 2 and 3 + i.
- 23. Prove that a sub-set of a denumerable set is finite or denumerable.
- 24. If α , β , γ , δ are the roots of $x^4 + ax^3 + bx^2 + cx + d = 0$ find the value of $\sum \alpha^2$.

Answer any 6 short answer questions out of 9:

(6×5=30)

- 25. Let A be a set of non-zero integers and let \equiv be a relation on A \times A defined as follows :
 - $(a, b) \equiv (c, d)$ whenever ad = bc.

Prove that \equiv is an equivalence relation.

K16U 2596

- 26. Prove that a countable union of finite sets is countable.
- 27. Prove that $(0, 1] \approx [0, 1]$.
- 28. Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.
- 29. Solve the equation $x^4 10x^3 120x^2 + 320x + 1024 = 0$ given that the roots are real and they are in G.P.
- 30. If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$, prove that $(\alpha + \beta)(\beta + \gamma)(\alpha + \gamma) = r pq$.
- 31. Solve $x^4 + 3x^3 3x 1 = 0$.
- 32. Show that the statement every "positive integer is the sum of the squares of three integers is false".
- 33. i) Express the definition of a limit using quantifiers.
 - ii) Translate the statement "The sum of two positive integers is positive" in to a logical expression.

Answer any one essay question out of 2:

 $(1 \times 10 = 10)$

- 34. i) Solve the equation $x^4 + 2x^3 x^2 2x 3 = 0$
 - ii) Solve $x^3 6x^2 + 3x 2 = 0$.
- 35. Show that:

i)
$$(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \equiv R$$

ii)
$$((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$$
 is a tautology.