CEL ATT

K18U 2250

leg.	No.	:	 11

Name :

Time: 3 Hours

I Semester B.Sc. Hon's (Mathematics) Degree (Reg./Supple./Improv.)

Examination, November 2018

(2016 Admn. Onwards)

BHM 103 : DIFFERENTIAL CALCULUS

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. What is the value of $\lim_{x\to 2} \frac{x+3}{x+6}$?
- 2. Find the derivative of $(3 x^2)(x^3 x + 1)$.
- 3. What is the nth derivative of log (ax + b) ?
- 4. State true or false : As $x \to \infty$, $x + \sin x = O(x)$.
- 5. If $u = \frac{2y}{y + \cos x}$, what is the value of $\frac{\partial u}{\partial x}$?

 $(4 \times 1 = 4)$

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

- 6. What do you mean by infinite limits?
- 7. State max-min theorem for continuous functions.
- 8. State Rolle's theorem and mean value theorem
- 9. Discuss the concavity of $y = x^3$.

P.T.O.

K18U 2250

- 10. Find the nth derivative of $\frac{x+1}{x^2-4}$.
- 11. Define exponential function. Write the law of exponents.
- 12. Evaluate $\int \frac{\log_2 x}{x} dx$.
- 13. Show that $\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+y^2}$ does not exist.

14. Find
$$\frac{dw}{dt}$$
 if $w = xy + z$, $x = \cos t$, $y = \sin t$, $z = t$. (6×2=12)

-2-

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

15. State Sandwitch theorem. Use this theorem to find $\lim_{x\to 0} u(x)$ if

$$1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2}$$
 for all $x \ne 0$.

- 16. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$ prove that $\lim_{x\to c} (f(x) + g(x)) = L + M$.
- 17. What do you mean by left hand limit and right hand limit? Show that sin(1/x) has no limit as x approaches zero from either side.
- 18. Explain the idea of continuity of a function at a point. Discuss the continuity of f(x) = |x|.
- Find two positive numbers whose sum is 20 and whose product is as large as possible.
- 20. Find the nth derivative of $(2x + 3)^3 \log (2x + 1)$.

21. Find
$$\frac{dy}{dx}$$
 if $y = \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1}$, $x > 1$.

22. Find
$$\lim_{x\to 0^+} + (1+x)^{1/x}$$
.

-3-

K18U 2250

23. What do you mean by inverse hyperbolic functions? Show that if u is a differentiable function of x whose values are greater than 1, then

$$\frac{d}{dx}\left(\cosh^{-1}(u)\right) = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}.$$

- 24. Find the linearization of $f(x, y, z) = x^2 xy + 3 \sin z$ at the point (2, 1, 0).
- 25. Find $\frac{\partial w}{\partial x}$ at the point (2, -1, 1) if $w = x^2 + y^2 + z^2$, $z^3 xy + yz + y^3 = 1$, and x and y are the independent variables.
- 26. Find the local extreme values of the function $f(x, y, z) = x^2 + xy + y^2 + 3x 3y + 4$.

 $(8 \times 4 = 32)$

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

- 27. Find the critical points of $f(x) = x^{1/3} (x 4)$. Identify the intervals on which f is increasing and decreasing. Find the function's local and absolute extreme values.
- 28. If $y = \sin(m \sin^{-1} x)$, prove that $(1 x^2) y_{n+2} (2n + 1)xy_{n+1} + (m^2 n^2)y_n = 0$.
- 29. a) State and prove the first form of L'Hospital rule for indeterminate forms.
 - b) Evaluate $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{x} \right)$
- 30. The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin. (2x6=12)